

Some topics....

- Spacing and Uniformity of Emergence
- Yield Components
- Environmental Affects on Corn Yields
- Yield Components, Plant Dynamics, and VRS
- Water Management

2016 Corn School - Oakely

nowledge

Purdue Study

- Bob Nielsen published results from an on-farm survey of corn plant uniformity in 1995
- This survey included 22 sites.
- They reported a 0.6 to 1 inch increase in SD per mph increase in planter speed. They also reported a 2.3 bu/acre yield loss when speed increased from 4 to 7 mph.
- They did not account for difference in plant population between the two speed treatments and only saw yield decreases in 5 of the 22 environments.

2016 Corn School - Oakely

Nafziger and Lauer

- Nafziger (1996) reported that 10% skips reduced yields 5% to 8% and 10% doubles increased yields by 4 to 8%.
 - Was the first to suggest that the achieving the appropriate plant population with adequate spacing was the most important goal for maximizing corn yields.
- Lauer (2004) reported that plot grain yields rarely were affected by two-plant variations and yields were only affected four- and eight-plant variations (more hill like).

2016 Corn School - Oakely

Knowledge

Pioneer

- Pioneer agronomists become interested in seed spacing uniformity in about 2000
- Early calibration demonstrations reported an average of 1.1 to 6.1 bu/acre increase for every one-inch of within-row plant spacing decrease.
- ALSO noted that you did not need a perfect stand to achieve maximum yields, on 2 to 3 inches of within row plant spacing standard deviation or less.

2016 Corn School - Oakely

Pioneer - continued

- Reported no increase in barreness with doubles. In fact these "extra" increased individual plant yields.
- Also reported plants growing next to gaps (skips) were the least productive on an individual plant basis.

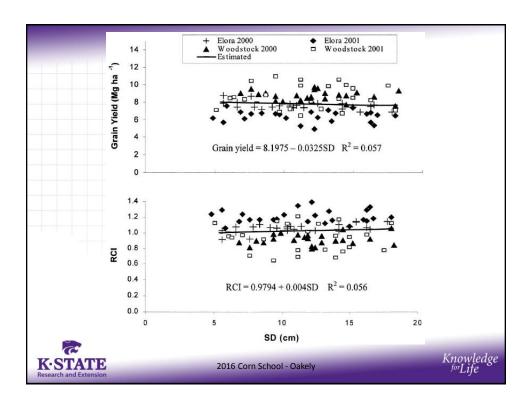
The way these results are reported illustrate a fallacy in early plant spacing work, **the focus on individual plants**. We grow crops in a community. Plants can compensate across the community as a whole.

2016 Corn School - Oakely

Tollenaar 2004

- Evaluated planter speed and metering systems.
 - Reported that at low speeds (4.5 mph), finger pick-up and vacuum systems produced similar SDs. (3 vs 3.3 in ± 0.4)
 - At higher speeds (7 mph), finger pick-up SD was 3.4 in and vacuum systems SDs were 4.1 ± 0.4 in.
 - Conventionally tilled systems had lower SDs than no-till systems (4.8 vs 5.3 in ± 0.4).
 - High SDs from an air seeder treatment (7.5 in) influenced regression results resulting in results of "the highest yields were attained from treatments with the lowest SDs"

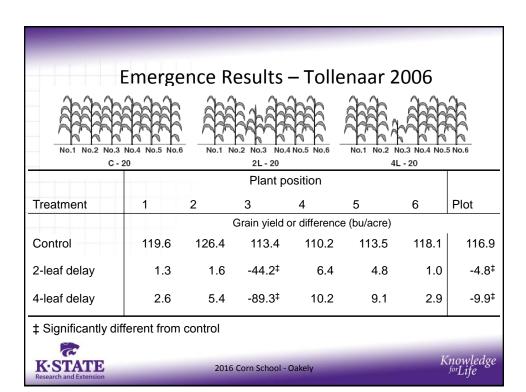
2016 Corn School - Oakely



Liu et al., 2004

- Mixed RR and conventional seed at various ratios to obtain irregular stands, planted at 70k seeds ha⁻¹ (31.8k seeds ac⁻¹)
- Six treatments resulting in a SD range of 6.7 to 16.2 cm (2.6 to 6.4 inches)
- Plant spacing variability had no effect on grain yield, leaf number, plant height, LAI, or HI.

2016 Corn School - Oakely



Tollenaar 2006

- Previous research prompted a closer look at corn community response to imperfect stands.
- They looked at plant emergence delays (2 and 4 leaf delays) and a skip-double and skip-triple.
- A two leaf delay in emergence reduced yields 5
 bu/acre and a 4 leaf delay reduced yields 10 bu/acre.
- Skip-double and skip-triple DID NOT reduce yields compared with a uniform stand when the whole plot yield was considered because adjacent plants compensated for the skip.

2016 Corn School - Oakely

Plant Hierarchies in Maize

Pagano and Maddonni, 2007

- Plant variability in above ground biomass increased through the season, CV of 1.2% at at V3 to 22% at V9-V10
- Early established hierarchies differ in biomass allocation to the ear around silking
- Dominant plants exhibited greater partitioning to the ear (HI=0.41) compared to dominated plants (HI=0.36)

2016 Corn School - Oakely

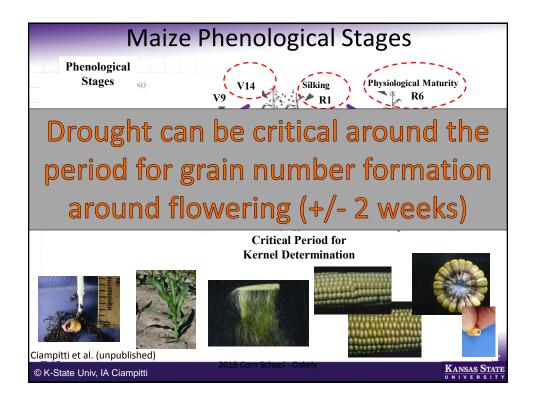
Evaluating Seeder Performance

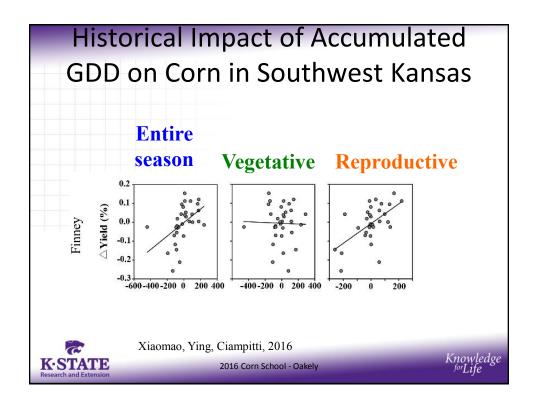
- Seed/Plant spacing uniformity
- Variability across the unit
- Emergence rate

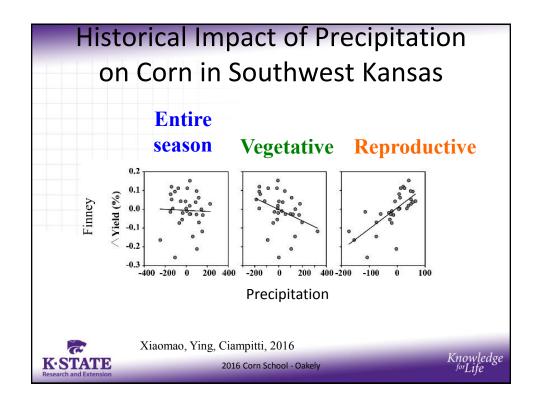
2016 Corn School - Oakely

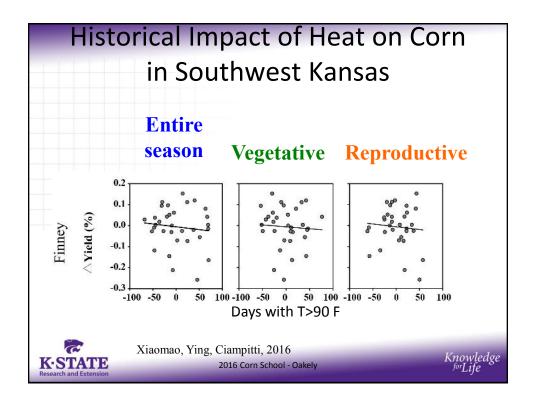
How do we improve uniformity?

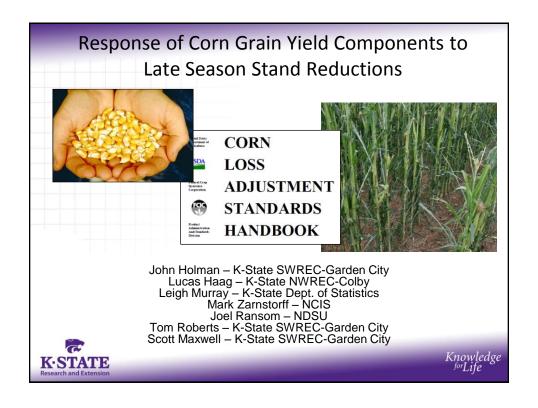
- Attachments
 - Metering
 - Seed Firmers
 - Press Wheels
- Adjustments
 - Speed
 - Down Force
- Maintenance
 - Metering System
 - Opener Disks
 - Seed Tubes


2016 Corn School - Oakely


Cnowledge forLife


Using Seeding Depth to Overcome Spatial Variability (Haag's opinion)


- Spatial variability
 soil temperature
 soil moisture
 bulk density
- What does the spatial variability of each of these characteristics look like as a function of depth
- Consistency of seed placement depth irrelevant if we're not deep enough



Question

At what growth stage do the remaining plants after a stand thinning hail event loose their ability to compensate?

2016 Corn School - Oakely

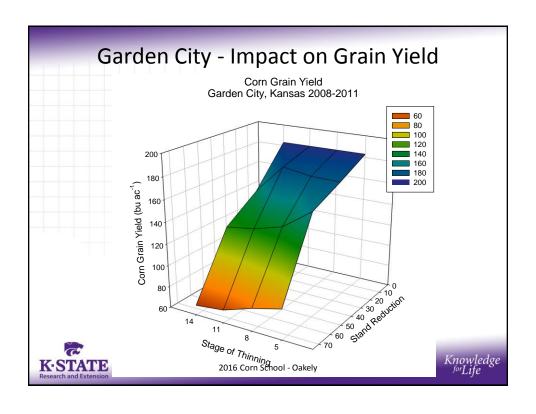
Materials and Methods

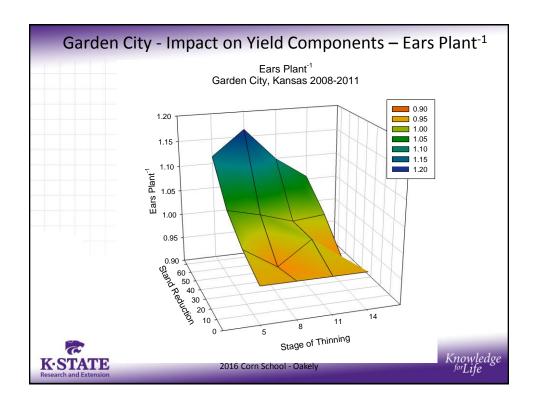
- Studies were conducted at Prosper, ND and Garden City, KS
- Corn was planted into a strip-tilled seedbed typically the 1st week of May
- Seeded at 36,000 plants ac⁻¹ then thinned back to 34,000 plants ac⁻¹
- Glyphosate, Atrazine, and BalancePro used for weed control

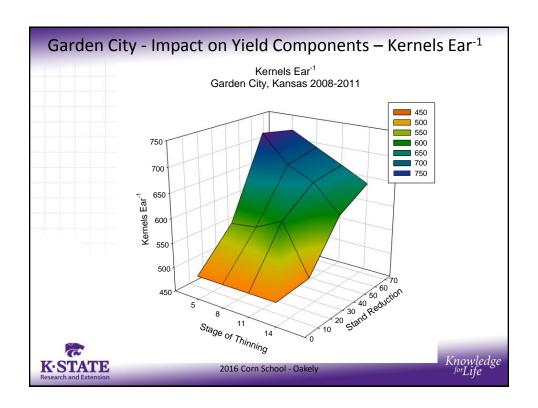
2016 Corn School - Oakely

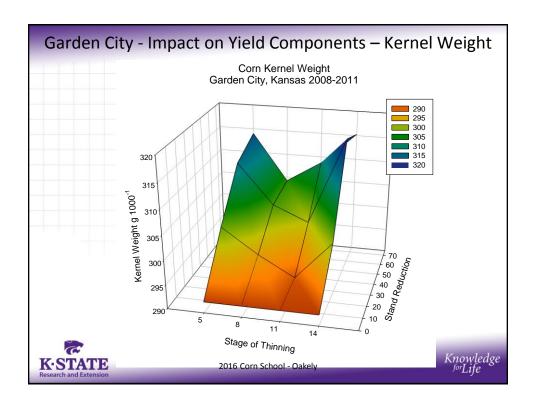
Materials and Methods

- A factorial treatment structure was placed in a RCBD design
- 4 Timings of Stand Thinning
 - V5, V8, V11, V14
- 4 Rates of Stand Thinning
 - 0, 25, 50, 75% of original stand (34,000 plants ac⁻¹)
- Plots were machine harvested after ear and stand counts were obtained.
- Kernel weight and protein was measured.


K-STATE


2016 Corn School - Oakely




Garden City Results, 2008-2011 Grain Harvest Ears Kernels Kernel Reduction Timing and Level Protein Yield Plant⁻¹ Weight Moisture Ear-1 % % bu ac⁻¹ g 1000⁻¹ Stage V5 137.7 16.4 1.05 674.4 309.3 8.23 V8 129.4 649.0 301.6 8.16 16.1 1.05 V11 125.4 16.5 1.03 640.6 300.6 8.32 V14 114.0 16.7 1.00 580.0 311.5 8.23 Reduction 0 183.0 16.2 0.97 498.2 292.3 8.09 25 164.9 16.6 0.98 565.5 298.6 8.10 50 137.4 16.6 1.02 665.5 308.1 8.23 75 77.5 16.1 1.11 677.0 310.5 8.58 Knowledge forLife 2016 Corn School - Oakely

		Corn Stand Reduction Study Garden City, KS 2008 - 2011					
Stage Redu	ction Yield	Vs. Contrtol	Dunnett Adjusted P				
Control	183.0						
V5 25		-14.0	0.6931				
V5 50	156.2	-26.9	0.0262				
V5 75	5 88.0	-95.0	<0.0001				
V8 25	5 169.7	-13.3	0.7564				
V8 50	137.3	-45.7	<0.0001				
V8 7:	5 81.0	-102.0	<0.0001				
V11 2	5 174.1	-8.9	0.9780				
V11 50	130.1	-52.9	<0.0001				
V11 75	72.0	-111.0	<0.0001				
V14 2	5 146.9	-36.2	0.0007				
V14 50	126.2	-56.8	<0.0001				
V14 75	5 69.1	-113.9	<0.0001				
	ce between co	ontrol and 2	25% removal				

Summary of Results

- At Garden City:
 - No difference between control and 25% removal at V5, V8, and V11 stages at Garden City
 - Percentage of stand reduction effected all yield components
 - Growth stage at stand reduction effected all yield components except ears plant⁻¹
- Amount of stand reduction was more important than timing of reduction
- Yield reductions were not linearly correlated to stand reduction at either location resulting in overestimation of yield losses by current procedures
- This study, and others, would suggest that corn plants remaining after a late-season thinning have more yield plasticity than we give them credit for.

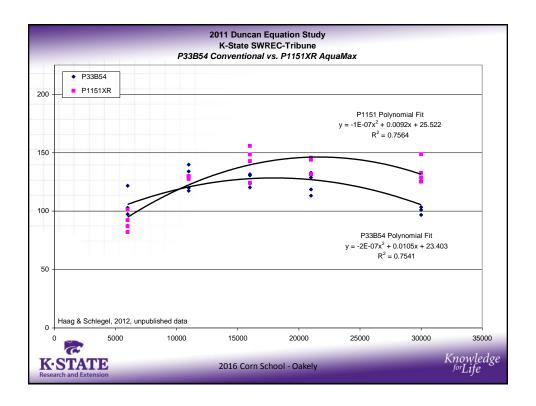
2016 Corn School - Oakely

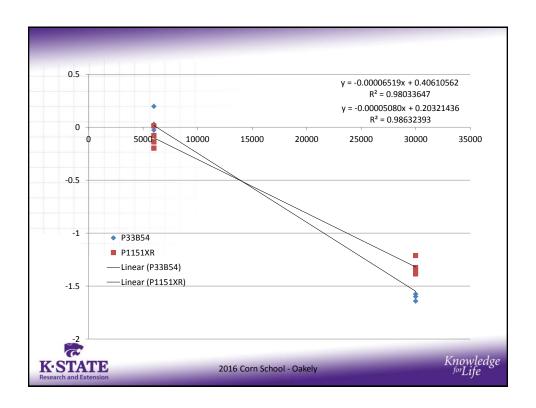
On-Farm Hybrid Characterization

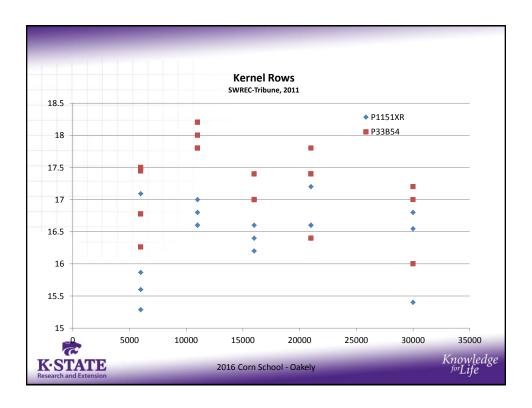
Developing data for VRS implementation

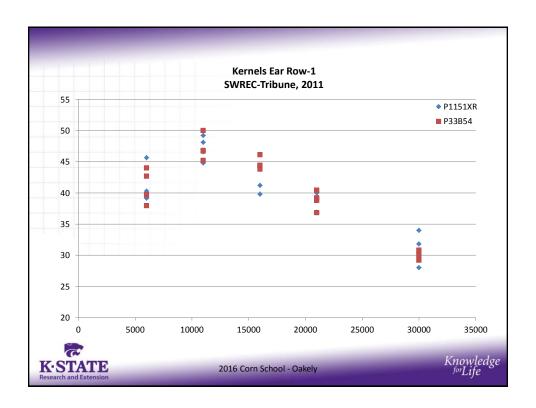
Lucas A. Haag Ph.D.

Assistant Professor / Northwest Area Agronomist K-State Northwest Research-Extension Center, Colby, Kansas

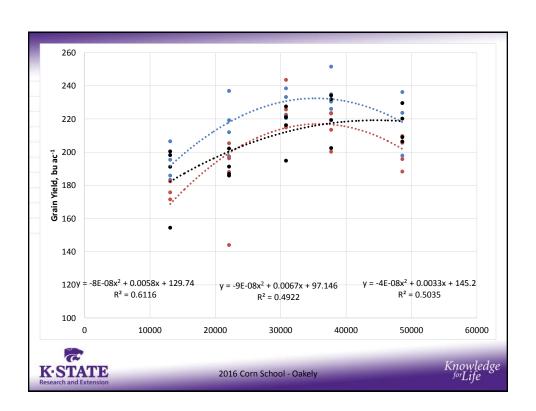

Knowledge forLife

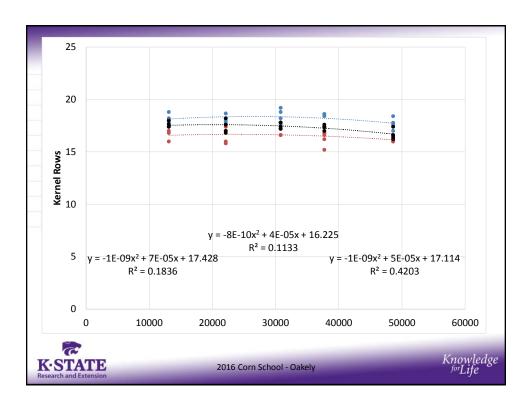

Hybrids and VRS

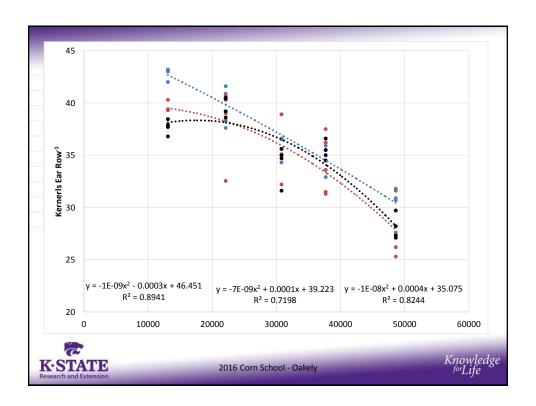

- Hybrid characterization is the key to effective VRS strategies
- Our ability to create VRT seeding prescriptions has exceeded our ability to characterize hybrids
 - Rapid hybrid turnover has further complicated this
- Yield components flex differently, at different rates, for different hybrids
- Fewer companies publicizing the "ear flex" scorings of products
 - Definition of ear flex, how much, what
 components

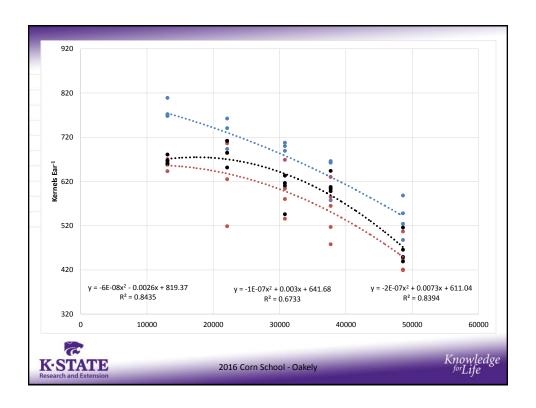


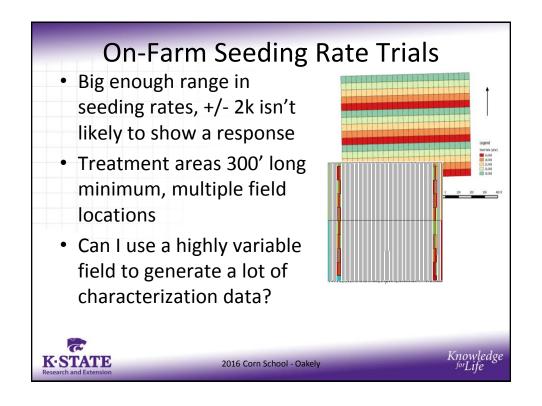
2016 Corn School - Oakely

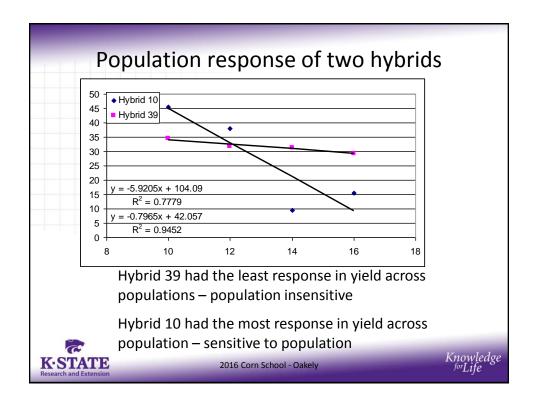


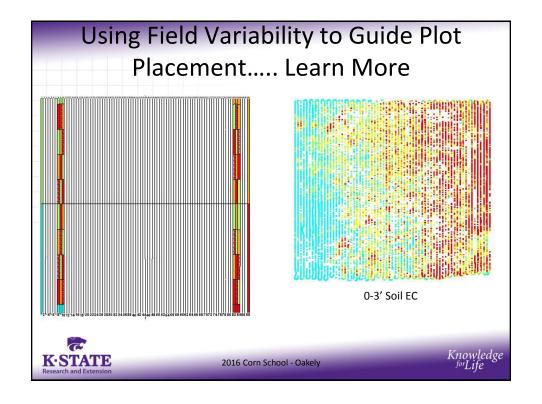

2016 Field Trials

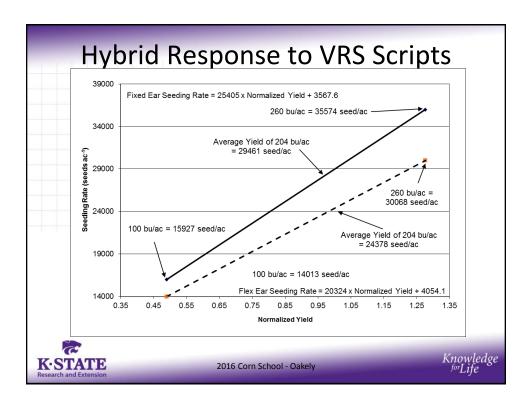

- Fully irrigated trial at NWREC-Colby
 - 3 Hybrids
 - 5 Seeding Rates: 13.1, 22.1, 30.8, 37.8, and 48.6k/ac
 - 4 Replications in RCBD
- Dryland trial on-farm in Decatur County
 - 38 Hybrids
 - 5 Seeding Rates: 8.1, 14.2, 17.2, 20.7, 27k/ac
 - 4 Replications in a SPD
- Yield, Kernel Rows, Kernels per Row, Kernel Wt.

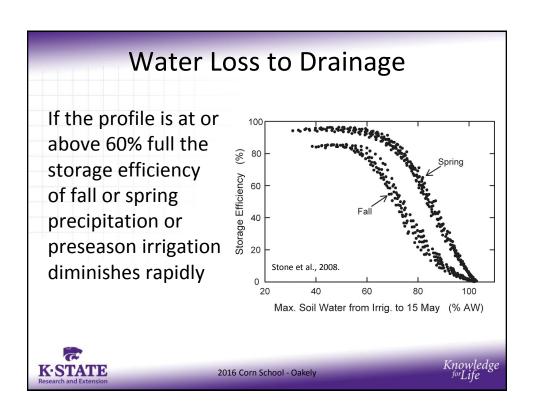



2016 Corn School - Oakely

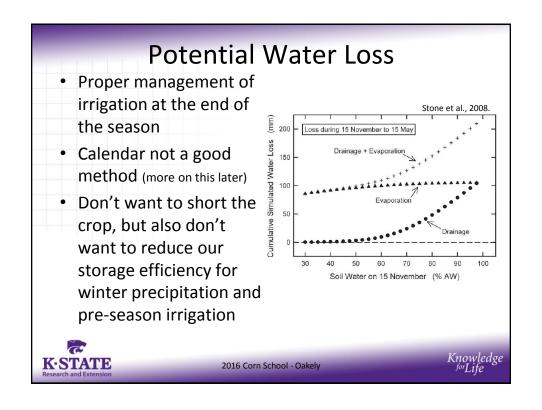




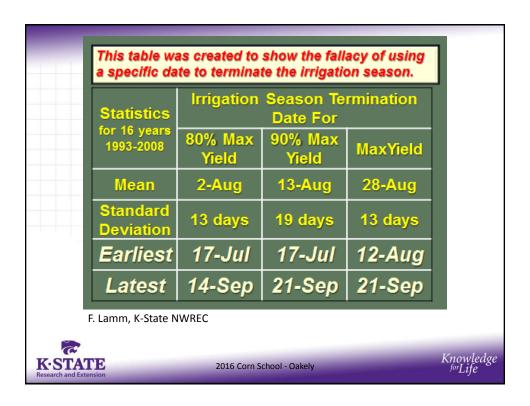



Hybrid response to population

- Effective VRT seeding requires the use of hybrids that are responsive to population.
- We need good characterization of hybrids.
- How confident are you in your prescription?
 - Are you doing something to validate/evaluate



2016 Corn School - Oakely



Potential Average Lamm et al., 2012 15 Water Loss 5 In an 8' profile, 60% Fall PASW (inches/8 ft) available soil water Maximum would be approximately 9.6" in a Western Kansas silt-loam soil Storage efficiency of Minimum additional water 2010 2011 approaches zero at 10 100% ASW, or 16" in this case Northwest **West Central** Southwest Knowledge ^{for}Life **K-STATE** 2016 Corn School - Oakely

IIIIgati	ion Term	mation
Stage of Growth	Approximate number of days to maturity	Water use to maturity (inches)
Corn		
Blister	45	10.5
Dough	34	7.5
Beginning dent	24	5
Full dent	13	2.5
Black layer	0	0
Grain Sorghum		
Mid bloom	34	9
Soft dough	23	5
Hard dough	12	2
Black layer	0	0
Soybeans		
Full pod	37	9
Beginning seed	29	6.5
Full seed	17	3.5
Full maturity	0	0
Adapted from K-State	MF2174, Rogers and S	others.
	2016 Corn School - Oake	ly

	Year	Date of Anthesis	Date of	Irrigation Season Termination Date For			
			Maturity	80% Max Yield	90% Max Yield	MaxYield	
	1993	20-Jul	30-Sep	5-Aug	5-Aug	15-Aug	
	1994	20-Jul	15-Sep	5-Aug	15-Aug	15-Aug	
	1995	20-Jul	29-Sep	5-Aug	13-Aug	18-Aug	
	1996	20-Jul	3-Oct	17-Jul	17-Jul	29-Aug	
	1997	23-Jul	1-Oct	23-Jul	23-Jul	27-Aug	
	1998	20-Jul	28-Sep	20-Jul	20-Jul	24-Aug	
	1999	23-Jul	6-Oct	24-Jul	13-Aug	20-Sep	
	2000	12-Jul	20-Sep	14-Sep	20-Sep	20-Sep	
	2001	16-Jul	29-Sep	30-Jul	22-Sep	22-Sep	
	2002	22-Jul	30-Sep	4-Aug	30-Aug	7-Sep	
	2003	22-Jul	23-Sep	3-Aug	3-Aug	18-Aug	
	2004	19-Jul	28-Sep	8-Aug	21-Aug	27-Aug	
	2005	20-Jul	28-Sep	2-Aug	9-Aug	29-Aug	
	2006	17-Jul	25-Sep	30-Jul	13-Aug	13-Aug	
	2007	18-Jul	19-Sep	14-Aug	21-Aug	28-Aug	
	2008	24-Jul	10-Oct	31-Jul	6-Aug	27-Aug	
	Average	19-Jul	27-Sep	2-Aug	13-Aug	28-Aug	
	Standard Dev.	3 days	6 days	13 days	19 days	13 days	
	Earliest	12-Jul	14-Sep	17-Jul	17-Jul	12-Aug	
	Latest	24-Jul	10-Oct	14-Sep	21-Sep	21-Sep	
				ividual irrigation t			

Upcoming Opportunities

- CYA: January 17-18, Oberlin
 - www.northwest.ksu.edu/CoverYourAcres
- KARTA: January 19-20, Junction City
 - www.kartaonline.org
- Central Plains Irrig., Burlington, Feb 21-22
 - www.ksre.ksu.edu/sdi/events

2016 Corn School - Oakely

Knowledge forLife

