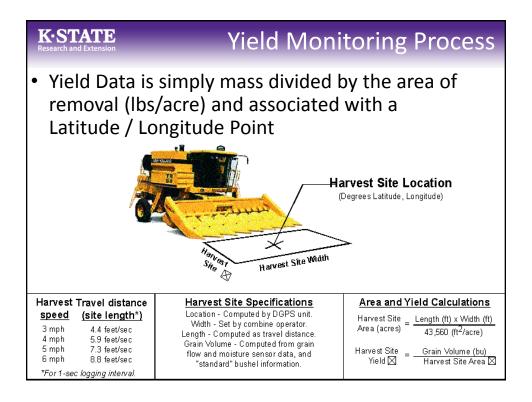
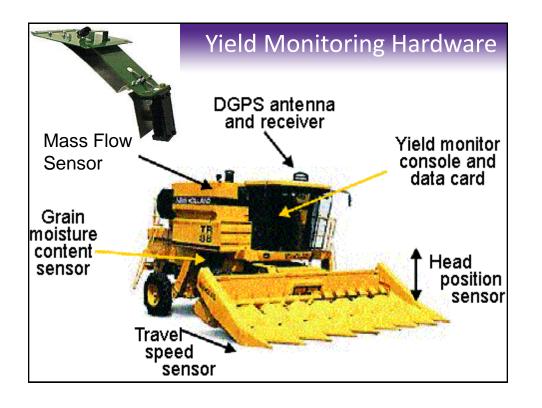


Yield Monitors Collecting and Utilizing Data

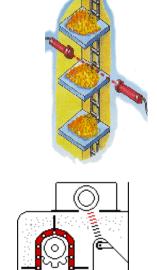
Lucas A. Haag Ph.D.

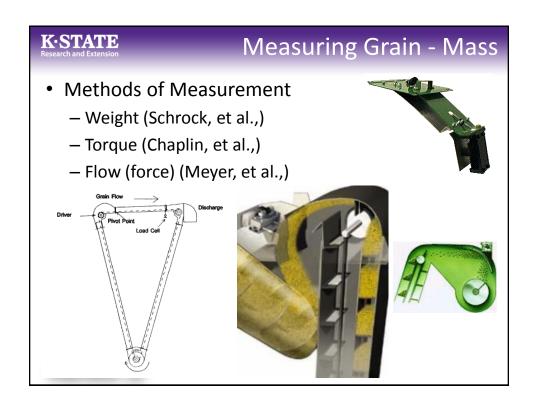
Assistant Professor / Northwest Area Agronomist K-State Northwest Research-Extension Center, Colby, Kansas





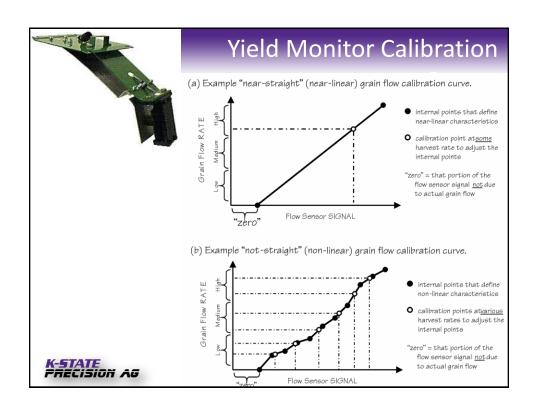
Lets talk about the hardware....


K-STATE PRECISION AG



Measuring Grain - Volume

- Methods
 - Light (RDS, Loup, Claas, Topcon)
 - Radiation
- Benefits
 - Simple and Cheap
- Problems
 - We sell weight, not volume
 - Test weight becomes a factor
 - MOG becomes a factor
 - Radiation not "acceptable"



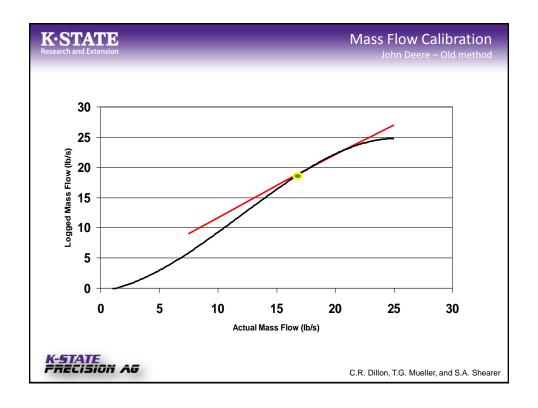
Measuring Grain – Mass

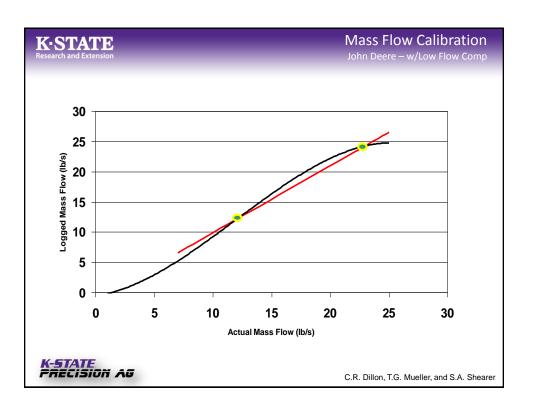
- Benefits
 - Accurate
 - Measures what we sell
 - Immune to test weight and MOG
- Problems
 - Requires a more intense calibration
 - Requires more mathematics / real-time processing
 - Geometry and dynamics of grain flow

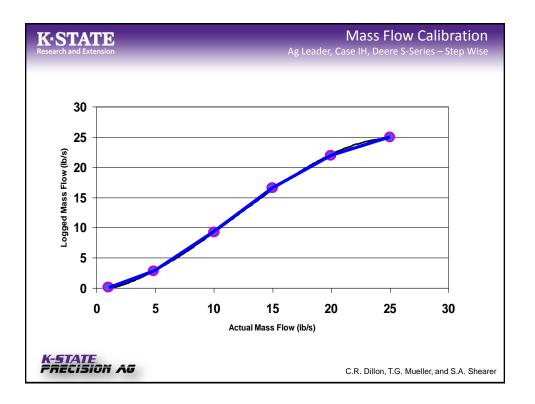
Yield Monitor Calibration -

- Confirm the accuracy of the moisture tester and weighing device used as a check (weigh wagon, truck scale, grain cart scale, etc.)
- Sample loads for mass flow should be of ample size (3000 lbs) and each should be harvested at a consistent flow rate (bu./hr).
- Samples for moisture sensor calibration should be relatively small, not on a truck load basis

K-STATE


Yield Monitor Calibration


Flow Rates for Calibration


 Full Flow – Drive faster than normal harvest speed (additional 1 - 2 mph), ensure the combine is operating at maximum capacity, note this flow rate (bu./hr)

_	Full Flow	_
Area	1/4 Full Flow	∖rea
ڳ م	1/2 Full Flow	אר ⁄
Blank	3/4 Full Flow	Blank
	Additional Pass As Needed	

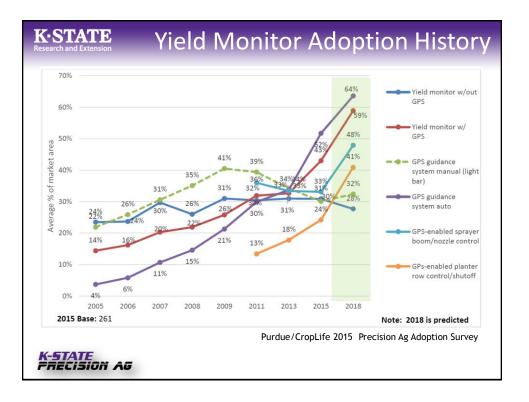
System Differences

- John Deere, prior to S-series
 - Advantage easy to calibrate 2 points
 - Disadvantage Only 2 point not as accurate
- Ag Leader Type Systems
 - Advantage multistep calibration curve is more accurate
 - Disadvantage more time/loads needed to calibrate

K-STATE PRECISION AG

Yield Monitor Calibration

- After calibration procedure error should be approximately 1.5 - 2.5%
- If error exceeds 5.0% then add additional calibration loads or remove loads that are suspect (observe individual load errors)



K-STATE

Producer Implementation of Precision Ag

- Better whole-farm management
 - On-Farm Research
 - Logistics / Machinery Management
- Better whole-field management
 - Making changes from field to field
- Site Specific Management
 - Same process, different scale
- Better management beyond the farm "Big Data"

Properties of Yield Data

- Error laden
- · Often lacking in meta-data
 - Hybrids (split-planter), weather, etc.
- Temporal density dependent on:
 - Rotation, crop failures, combinability of crops
- Spatially dense data
- It is our <u>best</u> measurement of what we are trying to manage

Is yield monitor data, big data, small data, or medium data?

YES

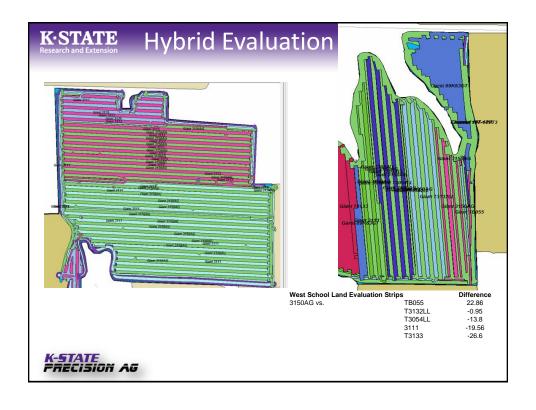
K-STATE

Yield Data Transcends Spatial Scales

• Small Data – Site and Time Specific

- Medium Data
 - Site Specific across Time
 - Field Level Data
 - Farm Level Data (Machinery Management)
- Big Data Large Datasets Aggregated Across Space-Time
 - Regional, National, or Global Scale Across Time

Advantage of Dense Data


Spatially and/or temporally dense data can be scaled up to any scale needed

however....

Spatially and/or temporally sparse data can't be scaled down (or only with a lot of error included)

K-STATE

K-STATE On-Farm Research Opportunities Grain Sorghum in 2012 No-till summer fallow 2013 20 lbs. P2O5 on 8-29 with Case Nutri Placer Planted 9-26-2013 TAM-111 Certified seed Ascend blended @ 4oz./cwt seed (\$4.08/ac) 60 lbs/acre Drilled with 30 foot Great Plains HD double disc drill Treated strips 180 feet wide Untreated strips 180 feet wide Harvested with 32' Stripper Head Full Name TAM111+Ascend (58.03 ac) Full Name TAM 111(65.75 ac) K-STATE PRECISION AG

9770-09 21.47 14.33 n 20.97	9770-11 22.14	Average field capacity difference between 8R and 12R corn head of 3.87 ac		
14.33	17.51	difference between 8R and		
n 20.97	9.82	12R corn head of 3.87 ac		
	9.82	178 (010 0640 013.87 40		
		1211 com meda or 5107 de		
Acres / Seperator Hour		hr ⁻¹ . At \$221 hr ⁻¹ machine		
9660	9770	•		
24.41	21.02	cost that's $$3.44 \text{ ac}^{-1}$.		
		•		
13.61	18.17	2013Proso9770.txt 1-3s, 4-6s, 6-8s, 8-10s, 10-15s		
n.	24.88			
•	28.17	2		
Acres / Sep	erator Hour	0 5 10 15		
9660	9770	Run 2: 15-60 seconds, 1-2 minutes, 2-5 minutes		
20.58	20.78	20 -		
	<u>. </u>	10 -		
13.90	11.64			
		0 50 100 150 200 250 300		
n.	•	5-15 minutes, 15-60 minutes, 1-3 hours, 3-10 hours, 10 hours-max		
	9660 24.41 13.61 n Acres / Sep 9660 20.58	9660 9770 24.41 21.02 13.61 18.17 n 24.88 28.17 Acres / Seperator Hour 9660 9770 20.58 20.78		

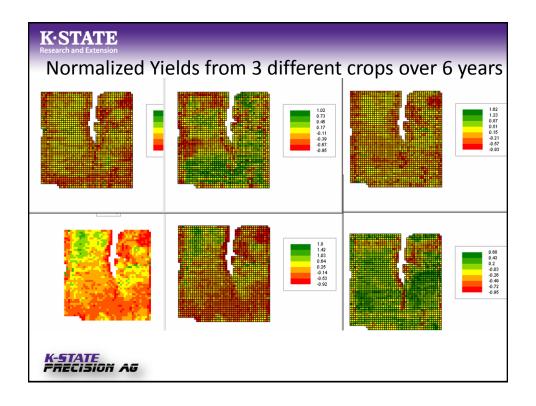
K-STATE

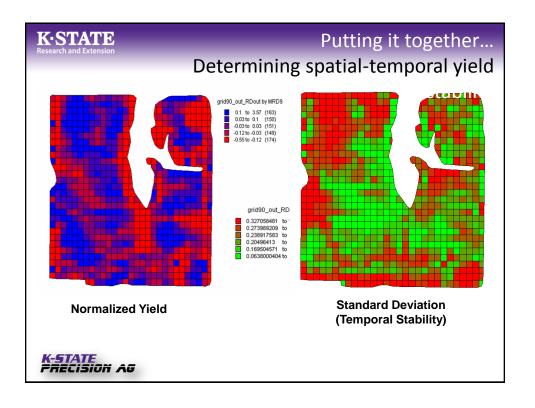
Site-specific management of inputs

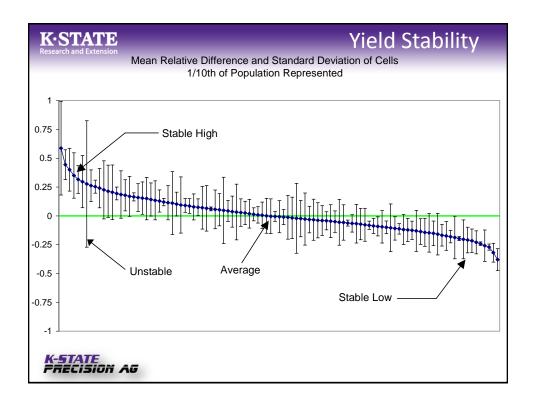
- Which input?
 - Has a strong yield input relationship
 - Data are available to drive the development
 - Opportunity for economic return
 - Ease of implementation
 - Data
 - Software
 - Method, product, and timing of application

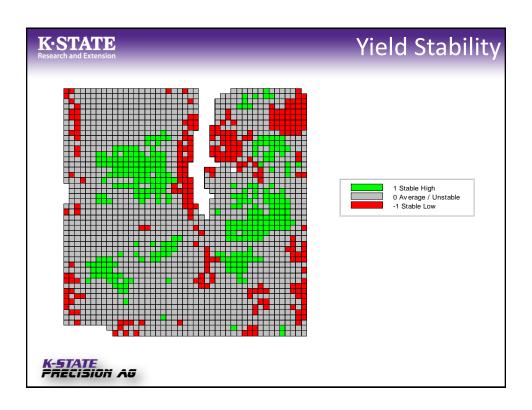
What data?

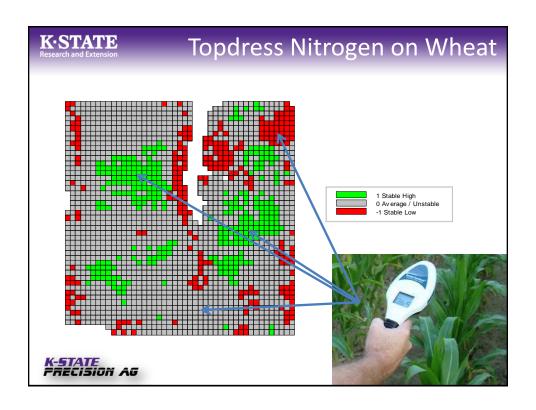
- What data sources would be useful in sitespecific nutrient management?
 - What is our recommendation framework
 - What information do we need

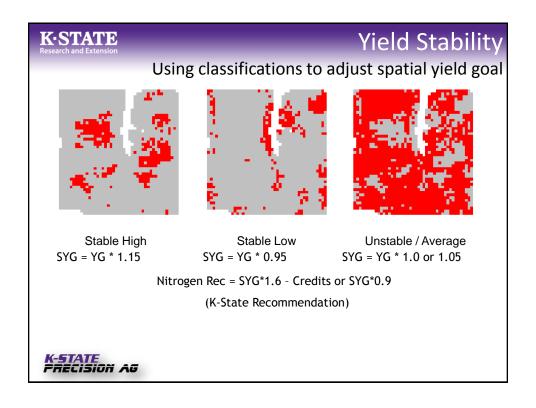



K·STATE


Management >>> Site-Specific Management


- How do you determine what seeding rate your going to use on corn?
- How do you determine how much nitrogen to apply?
- Our decision making process is yield driven, either express or implied
- We are just changing the scale we are making those decisions at.





Steps to VRA Prescription Development

- Identify decision making approach
 - Equation or Decision based
 - Example Nitrogen Recommendation Equation

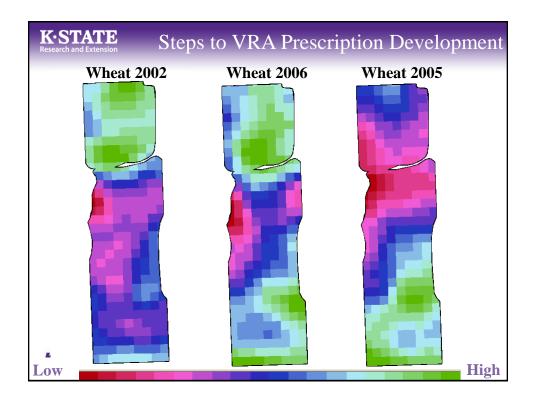
Example

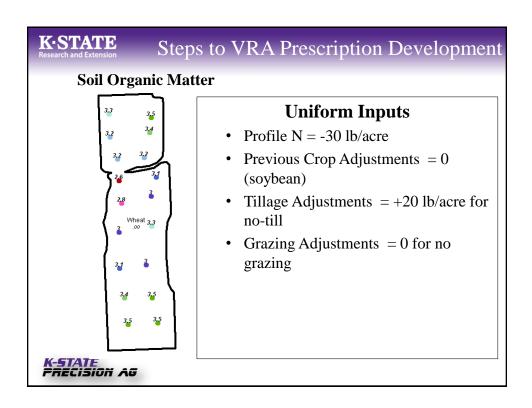
- Wheat Nrec = (Yield Goal × 2.4)
 - $-(\% SOM \times 10)$
 - Profile N
 - Other N Adjustments
 - + Previous Crop Adjustments
 - + Tillage Adjustments
 - + Grazing Adjustments

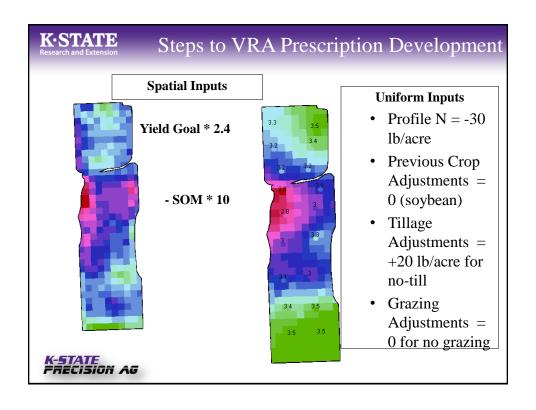
K-STATE

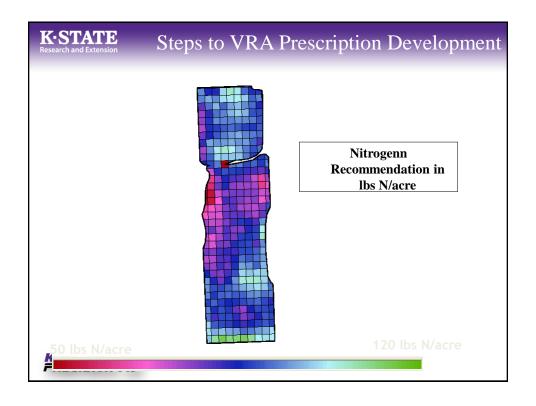
Steps to VRA Prescription Development

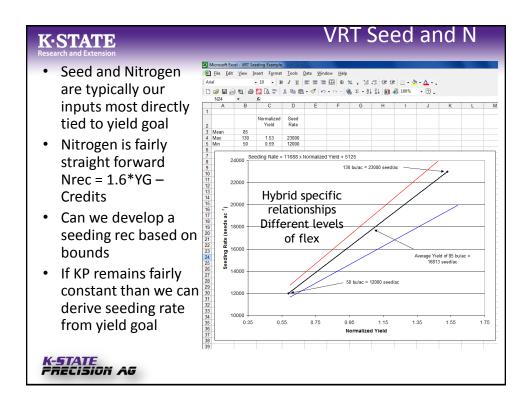
- Identify input variables needed AND determine if you have spatial data or NEED spatial data.
- Example
 - Yield goal, soil organic matter and Profile N could be spatial data

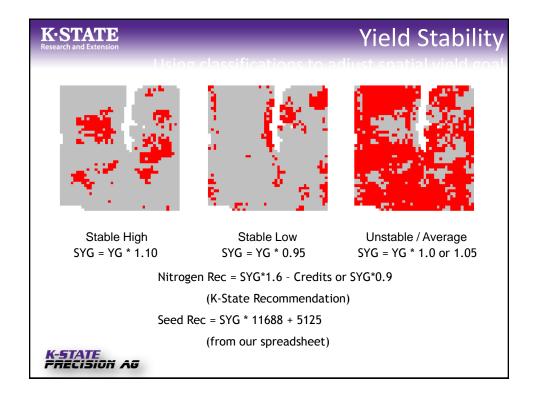

Example Inputs


- Yield Goal (S)
- SOM (S or U)
- Profile N (S or U)
- Other N Adjustments (U)
- Previous Crop Adjustments (U)
- Tillage Adjustments (U)
- Grazing Adjustments (U)


S = spatial


U = Uniform field wide





Shifting gears... longer term management

Fertilizer Recommendations

- N_{rec} = (YG*1.6)-(SOM*2.5)-Profile N-other adjustments
- P_{rec} = 50 + (YG*0.2)+(STP*-2.5)+(YG*STP*-0.01)
- $K_{rec} = 73 + (YG*0.21) + (STK*-0.565) + (YG*STK*-0.0016)$
- Lime_{6.8} = [12,810-(3,180*BpH)+(BpH²*98)]+Depth (in)
- All are soil test driven accepted as the most effective methods for fertilizer decisions
- All are yield goal driven (except lime), but phosphorus management is heavily guided by soil test levels

K-STATE

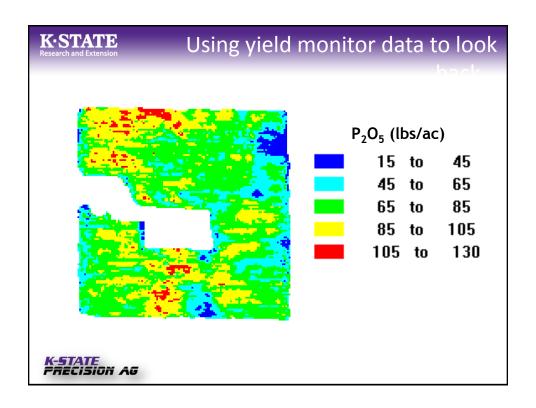
Soil Testing Expense

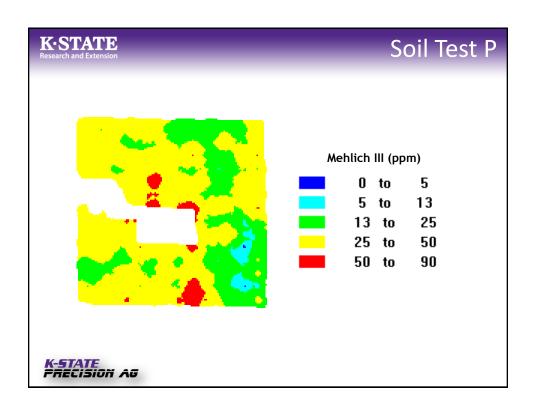
- Soil Test Cost
 - Lab costs between \$5 and \$25
 - Labor "costs" is the limiting factor for soil testing. Finding time to do it.
- Fertilizer decisions are often made without the benefit of soil tests.
 - Crop removal/replacement method
 - Standard annual rate method
 - Expected yield without regard to soil test levels

Soil Test Use Plan

- Crop removal & replacement method
 - Crop yield (bu/a) * removal rate (lb/bu) = lb/a
- · Soil Testing method
 - Soil test and use recommendation equations
 - Soil test initially, model removal, test periodically to adjust models.

Use yield monitor data to estimate soil test levels?



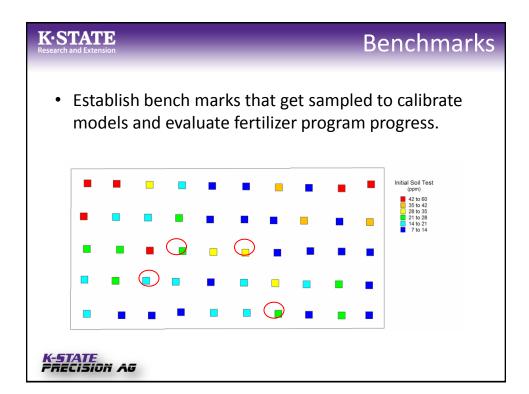

K-STATE

Phosphorus removal values

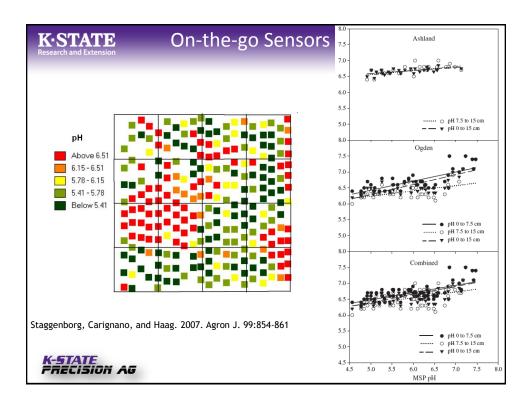
Сгор	Unit	P ₂ O ₅ (lb)
Corn	bushel	0.33
Grain Sorghum	bushel	0.40
Wheat	bushel	0.50
Sunflowers	pound	0.02
Oats	bushel	0.25
Soybeans	bushel	0.80

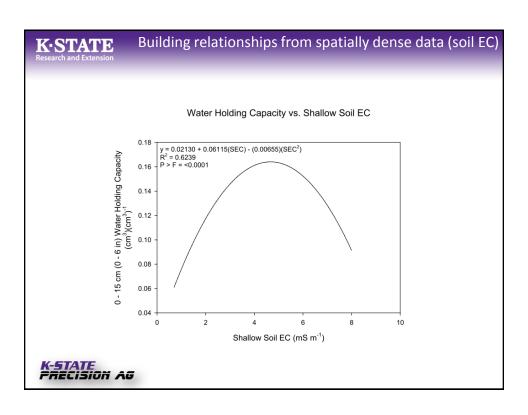
Crop Removal – the next step

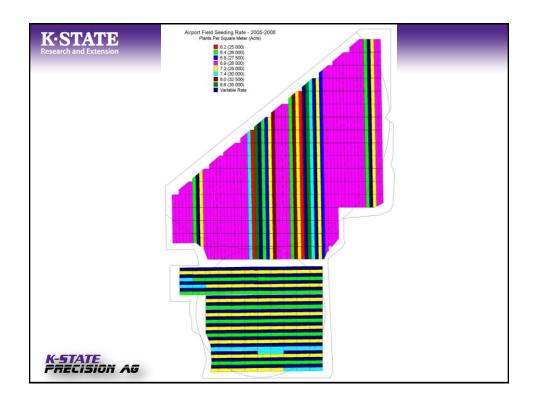
- Calculate crop removal
- Depending on over/under applications after crop removal, soil test levels will change.
- 18 lbs P₂O₅ is required to change STP one ppm.
- One cycle of a W-C-F rotation (using field averages)
 - ➤ Wheat yield = 60 bu/a, Corn yield = 110 bu/ac
 - ightharpoonup STP = 22 ppm, P_2O_5 = 30 lb/a
 - \triangleright Wheat Removal = 60 * .50 = 30 lbs P₂O₅ removed
 - \triangleright Corn Removal = 110 * .33 = 36 lbs P₂O₅ removed
 - \triangleright Total Crop Removal = 30+36 = 66 lbs P₂O₅ removed
 - > STP change = [30-66]/18 = 2 ppm drop
 - ightharpoonup Final STP = 22 2 = 20 ppm
- Just perform this process at every point in the field

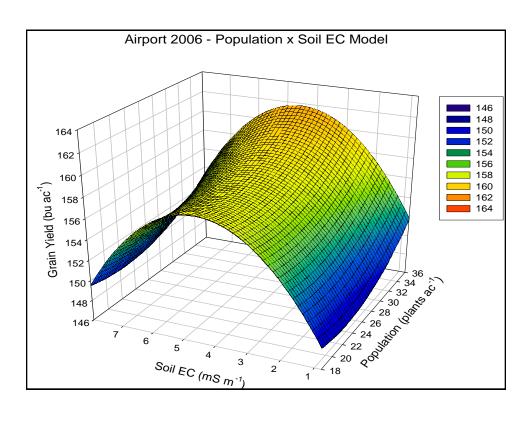


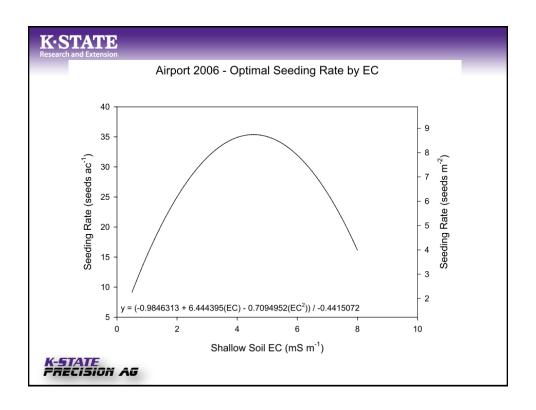
K-STATE

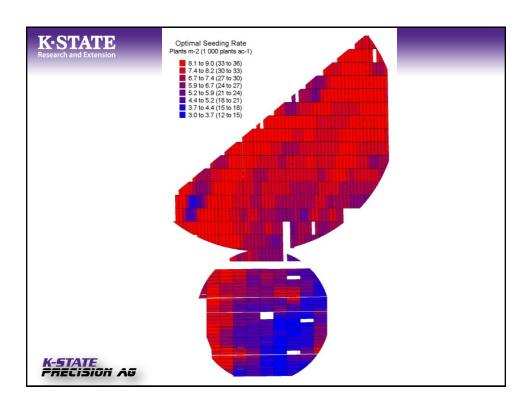

Crop Removal – the next step


- ➤ Perform crop removal and STP calculations at a site-specific scale for the field
- ➤ Potential Decision Rules
 - >Land ownership/tenancy makes a difference
 - > Decisions based on STP
 - ➤ IF STP > 30 then apply 0 or very minimal amount (intentional mining)
 - ➤ IF STP is >20 and <30 then apply removal rates
 - ➤IF STP is <20 then apply removal + build (build rate?)
- ➤ VRT apply P to meet management goals






• Soil EC • Soil pH • Soil nutrient sampling (grid, directed zone, etc.)

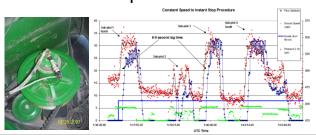


VRT Seeding Analysis

- Optimal seeding rate derived from yield response curves varied between 12,500 and 35,375 seeds ac⁻¹
- Use of the producers standard seeding rate of 28,000 seeds ac⁻¹ would result in 67% of the field area seeded under optimal and 33% above optimal

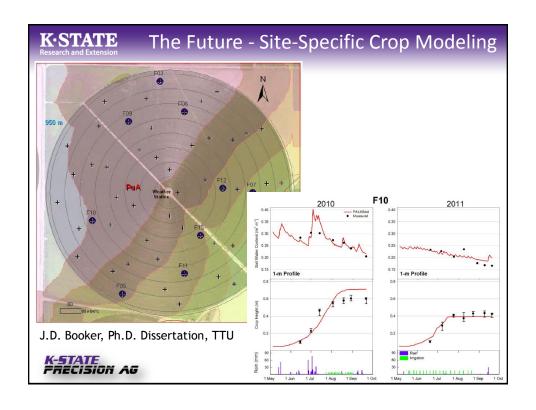
K-STATE

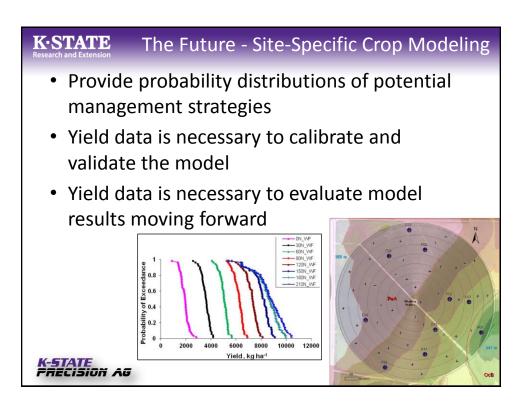
The Future


- Data Quality
 - Challenges Remain
 - Reprocessing of Old Data
 - Continued Improvements in Hardware
- Data Use
 - More "Turn-Key" Solutions
 - Site-Specific Crop Modeling

Challenges Remain

- Calibration
 - Dealing with real-time data, multiple machines
- Continued proliferation of "second-class" volumetric yield monitoring systems
- · Continued hardware development


K-STATE


K-STATE Research and Extension

Site-Specific Crop Modeling

- Crop modeling more accepted in other parts of the world at the field scale
- In the market in some forms
 - AdaptN, Encirca Nitrogen Mgt., Climate Corp, etc.
- What about calibration? Ground truthing?

Site-specific management questions to consider:

Does it make sense agronomically?

- Are we addressing a factor that affects yield?
- Do we adequately understand the input vs. yield response of what we are managing?
- Are we addressing the issue in an environmentally sound way?
- Do I have a way to evaluate this method of management?

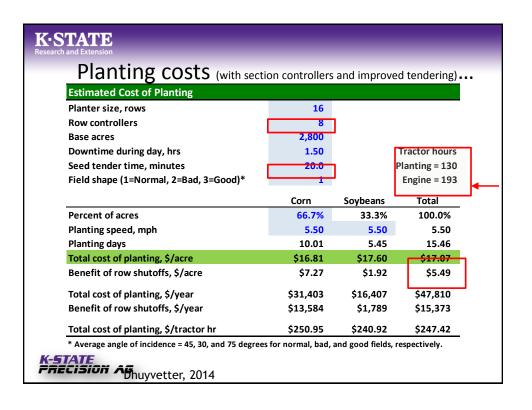
Does it make sense technically?

- Can my method of application accurately apply my intentions?
- Do I have a way to evaluate the results? (as-applied maps)

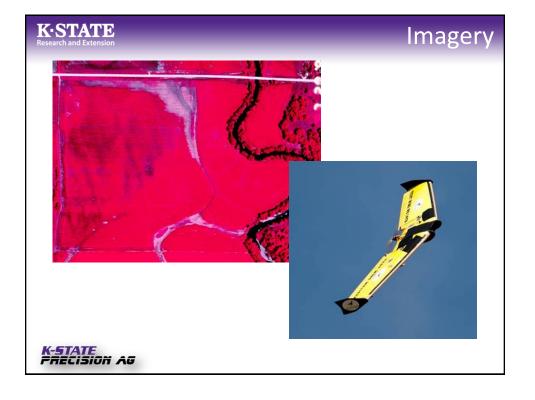
· Does it make sense economically?

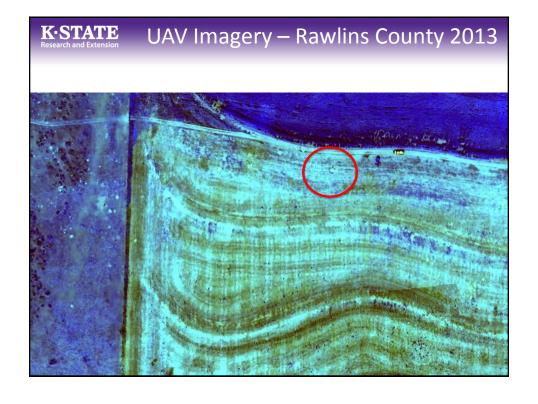
- What are the true costs of implementation? (don't forget to value your time)
- What is the probability distribution of years in which this will pay?
- Is there an easier (cheaper) way to achieve most of the benefit with less cost?
- Am I collecting enough data in my agronomic and technical evaluations that I can evaluate the economics of the practice?

Other emerging precision ag technologies / opportunities

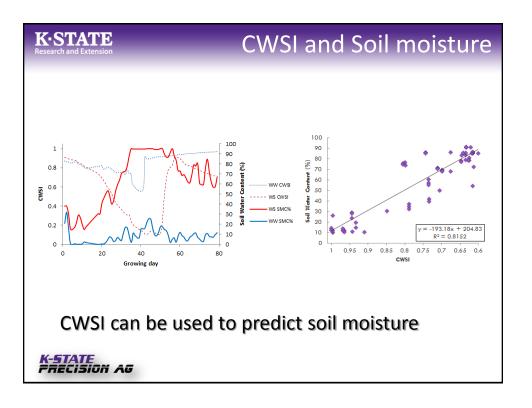

K-STATE

The future...


- Data quality, reprocessing
- sUAV's (drones) -?
- Telematics, mining machinery data
- Crop models?
- What about livestock?


Estimated Cost of Planting			
Planter size, rows	16		
Row controllers	8		
Base acres	2,800		
Downtime during day, hrs	1.50		Tractor hours
Seed tender time, minutes	30.0		Planting = 130
Field shape (1=Normal, 2=Bad, 3=Good)*	1		Engine = 209
	Corn	Soybeans	Total
Percent of acres	66.7%	33.3%	100.0%
Planting speed, mph	5.50	5.50	5.50
Planting days	10.69	6.01	16.70
Total cost of planting, \$/acre	\$17.37	\$18.53	\$17.75
Benefit of row shutoffs, \$/acre	\$7.27	\$1.92	\$5.49
Total cost of planting, \$/year	\$32,436	\$17,277	\$49,712
Benefit of row shutoffs, \$/year	\$13,584	\$1,789	\$15,373
Total cost of planting, \$/tractor hr	\$242.67	\$229.98	\$238.10


Sp	raying costs					
	Costs of spray	ing under alte	rnative assun	nptions ¹		
	Avg road	Tank fill time, minutes		Tank fill time, minutes		
	speed, mph	15.0	5.0	15.0	5.0	
		Acres spraye	d annually ²	Total cost	t/acre³	
	Miles between fields = 3.0					
	28.0	29,641	35,379	\$4.40	\$3.97	
	35.0	29,995	35,895	\$4.36	\$3.93	
	Miles between fields = 6.0					
	28.0	28,015	33,082	\$4.60	\$4.17	
	35.0	28,649	33,966	\$4.52	\$4.09	
				ill time, road speed ter tendering scena		
	. , .			all scenarios (if acro ter fill rate decreas		
K-ST/ PREC		mate of tendering tter, 2014	as well as spray	er owneship and op	perating	



What About Livestock?

- Facilities monitoring
- Herd monitoring
- Herd health monitoring
- Grassland assessment and grazing planning

