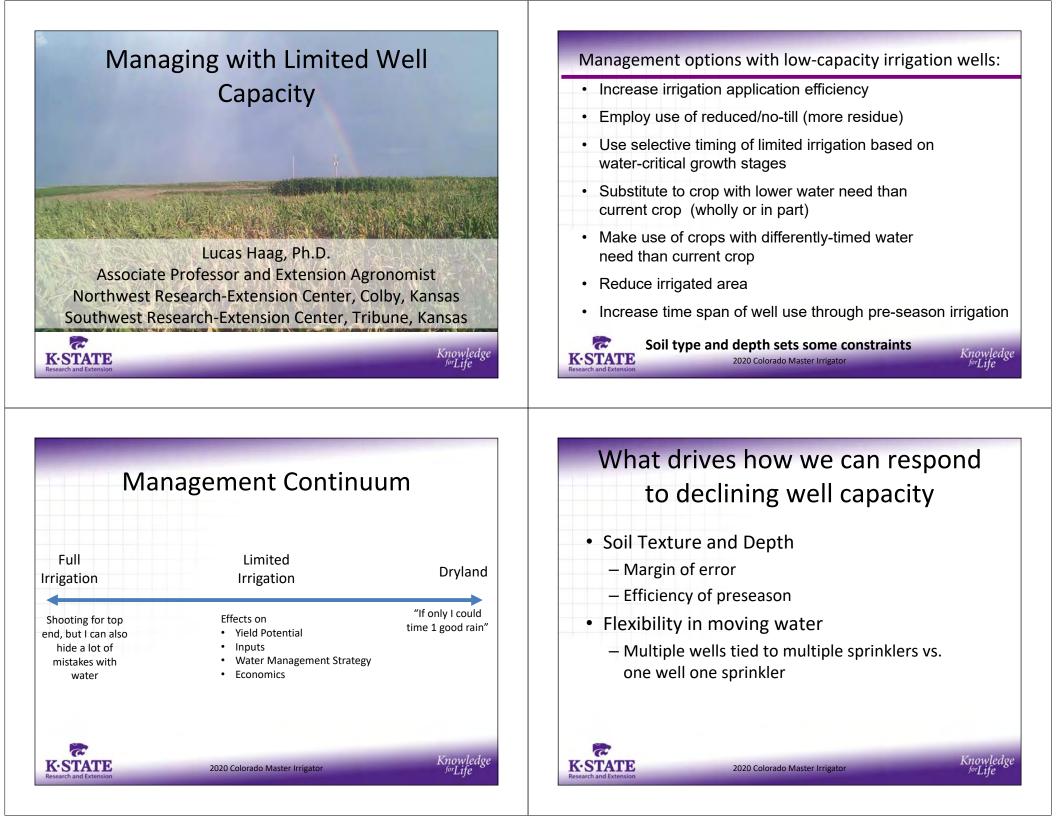
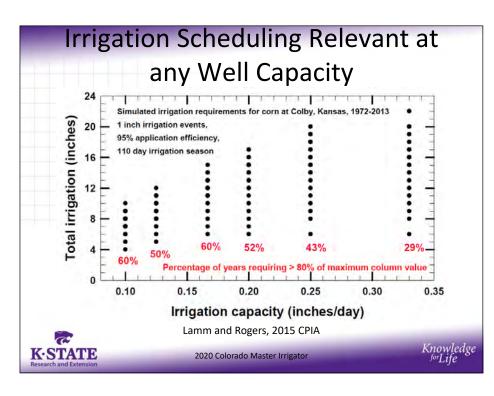
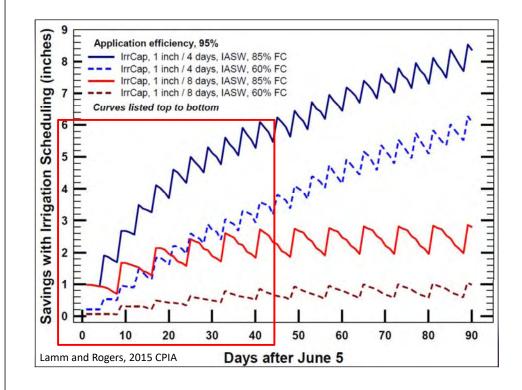
2022 K-State Limited Irrigation Corn Management Study

Thomas County, Kansas


McIlnay Farms, Cooperator


Soil Type:	Ulysses Silt Loam
Tillage:	Fall Strip-Till
Fertility:	Applied With Strip-Till 170 lb N/ac, 49 lb P/ac, 10 lb S/ac
	Applied As Starter at Planting 2.5 lb N/ac, 9.3 lb P/ac, 1.3 lb/ac K, applied as 1 gal/ac 10-34-0 and 2 gal/ac 6-24-6 1 qt/ac MicroMax, 1 qt Zinc, 1 qt Spectra, 0.5 oz/ac AG WSP, 2 qt/ac water
Irrigation:	Preseason: 2.5" of pre-water applied in two applications, late April and May 1^{st}
	In-season: 9 passes @ 1.25" each, total applied = 11.25"

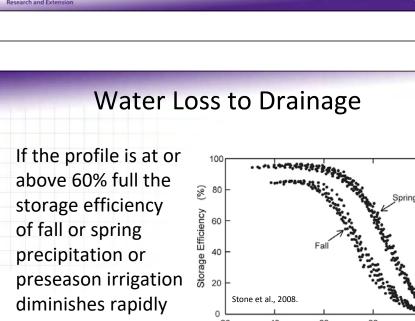

Precipitation: Total In-Season Precipitation: 1.80"

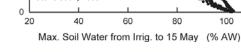
Precipitation	
6/24/2022	0.10
7/1/2022	0.35
7/24/2022	0.50
8/4/2022	0.05
8/20/2022	0.90
Total	1.90

Plot Planting Date: May 18th, 2022

	Year	Date of	Date of	Irrigation Se	eason Terminatio	n Date For
		Anthesis	Maturity	80% Max Yield	90% Max Yield	MaxYield
	1993	20-Jul	30-Sep	5-Aug	5-Aug	15-Aug
	1994	20-Jul	15-Sep	5-Aug	15-Aug	15-Aug
	1995	20-Jul	29-Sep	5-Aug	13-Aug	18-Aug
	1996	20-Jul	3-Oct	17-Jul	17-Jul	29-Aug
	1997	23-Jul	1-Oct	23-Jul	23-Jul	27-Aug
	1998	20-Jul	28-Sep	20-Jul	20-Jul	24-Aug
	1999	23-Jul	6-Oct	24-Jul	13-Aug	20-Sep
	2000	12-Jul	20-Sep	14-Sep	20-Sep	20-Sep
	2001	16-Jul	29-Sep	30-Jul	22-Sep	22-Sep
	2002	22-Jul	30-Sep	4-Aug	30-Aug	7-Sep
	2003	22-Jul	23-Sep	3-Aug	3-Aug	18-Aug
	2004	19-Jul	28-Sep	8-Aug	21-Aug	27-Aug
	2005	20-Jul	28-Sep	2-Aug	9-Aug	29-Aug
	2006	17-Jul	25-Sep	30-Jul	13-Aug	13-Aug
	2007	18-Jul	19-Sep	14-Aug	21-Aug	28-Aug
	2008	24-Jul	10-Oct	31-Jul	6-Aug	27-Aug
	Average	19-Jul	27-Sep	2-Aug	13-Aug	28-Aug
	Standard Dev.	3 days	6 days	13 days	19 days	13 days
	Earliest	12-Jul	14-Sep	17-Jul	17-Jul	12-Aug
1	Latest	24-Jul	10-Oct	14-Sep	21-Sep	21-Sep

K-STATE Research and Extension * Estimated dates are based on the individual irrigation treatment dates from each of the different studies when the specified percentage of yield was exceeded.

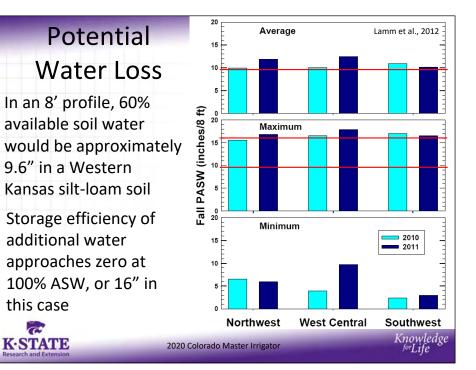

Irrigation Te	ermina	tion			
Stage of Growth	Approximate number of days to maturity	Water use to maturity (inches)			
Corn					
Blister	45	10.5			
Dough	34	7.5			
Beginning dent	24	5			
Full dent	13	2.5			
Black layer	0	0			
Grain Sorghum					
Mid bloom	34	9			
Soft dough	23	5			
Hard dough	12	2			
Black layer	0	0			
Dry Beans					
One pod w/fully developed seeds	35	7.0			
50% pods have full developed seeds	25	4.2			
One pod changed to mature color	15	2.0			
80% of pods changed to mature color	0	0			
Adapted from K-State MF2174, Rogers and Sothers and High Plains Dry Bean Guide Knowledge					
STATE 2020 Colorado N					

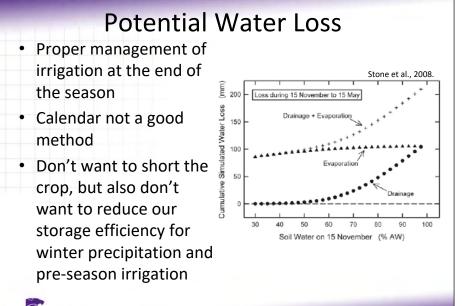

Timing of the final irrigation:

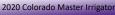
- Determine crop growth stage and anticipated remaining water use
- Determine soil water status in the field by probe or calibrated soil sensor technology
- Determine irrigation strategy necessary to meet remaining crop water use while maintaining soil water content at or above 55% (limit depletion to 45%).
- Be ready to make adjustments based on changes in ET demand, precipitation, etc.

2020 Colorado Master Irrigator

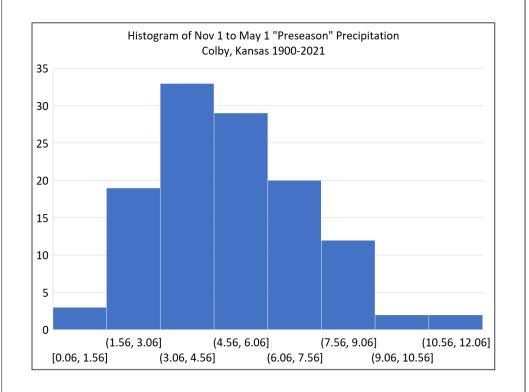
K·STATE

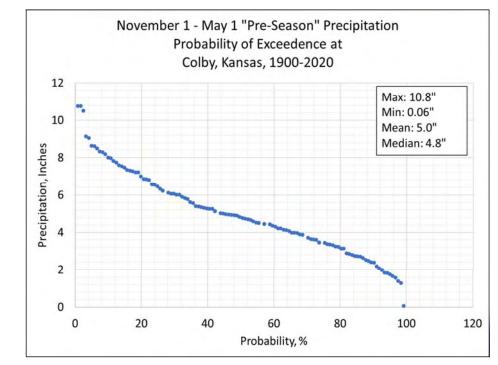






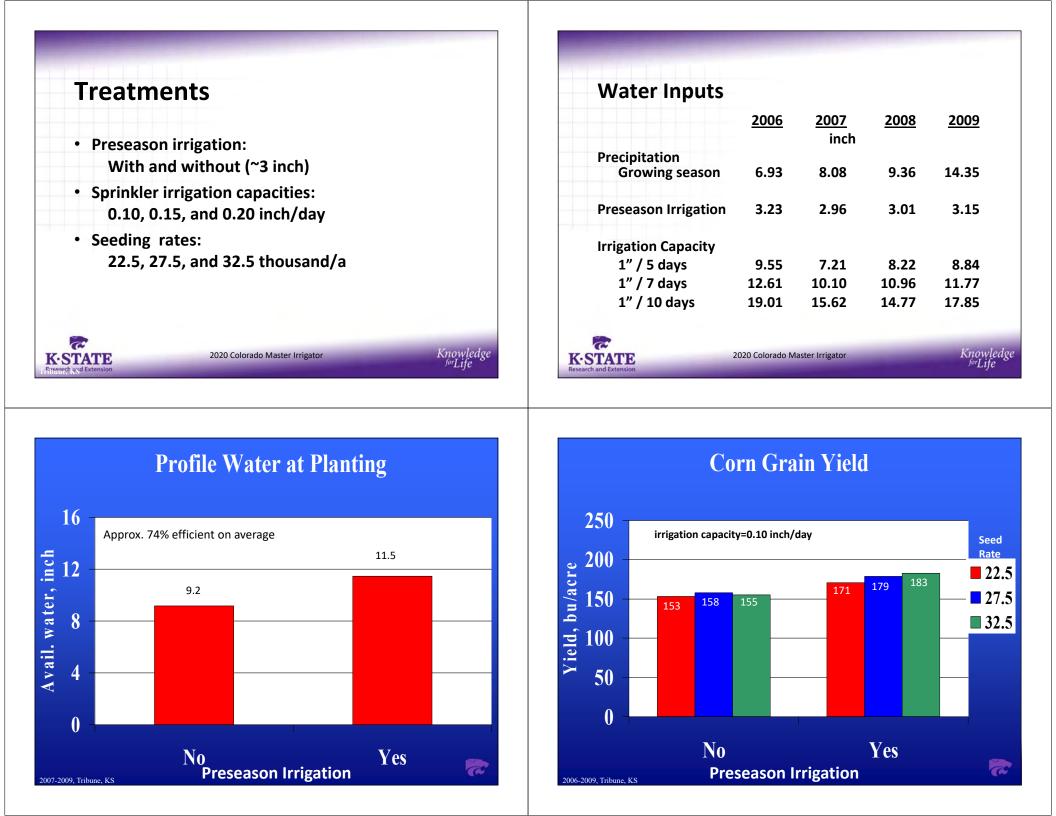
K·STATE


Knowledge

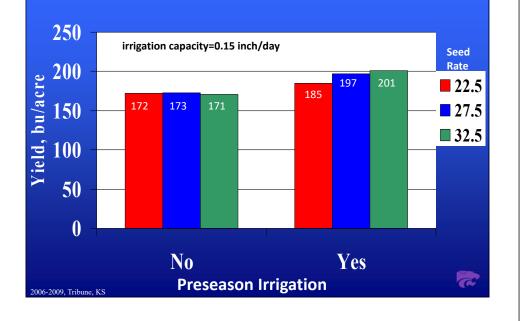


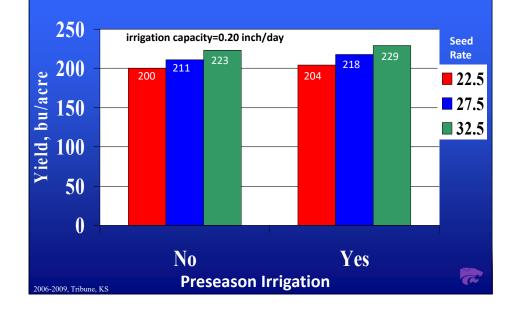
Preseason Irrigation – When?

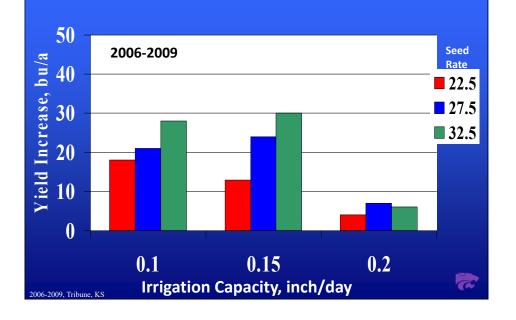
- Tradeoffs
 - Fall preseason is less efficient, especially if you don't leave room for precipitation, lets not forfeit the FREE water
 - Spring preseason has more losses to evaporation, especially in tilled systems, but allows you to capture winter precipitation without fear of losses
 - Ultimately a mixed approach is probably best



Managing irrigated corn with limited well capacity

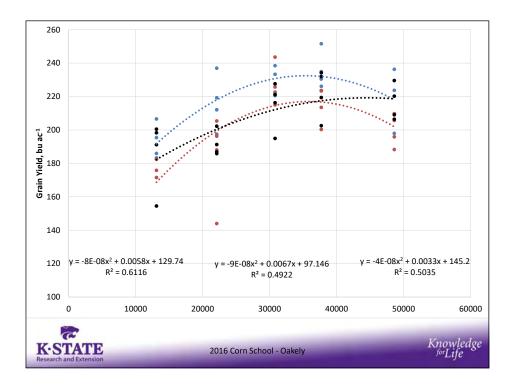

Alan Schlegel, Professor and Agronomist-in-Charge Southwest Research-Extension Center, Tribune, Kans.




Corn Grain Yield

Corn Grain Yield

Yield Increase from Preseason Irrigation

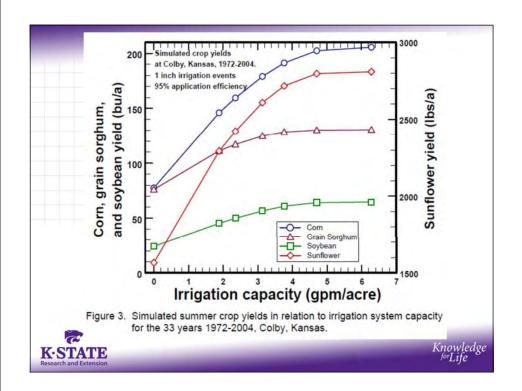


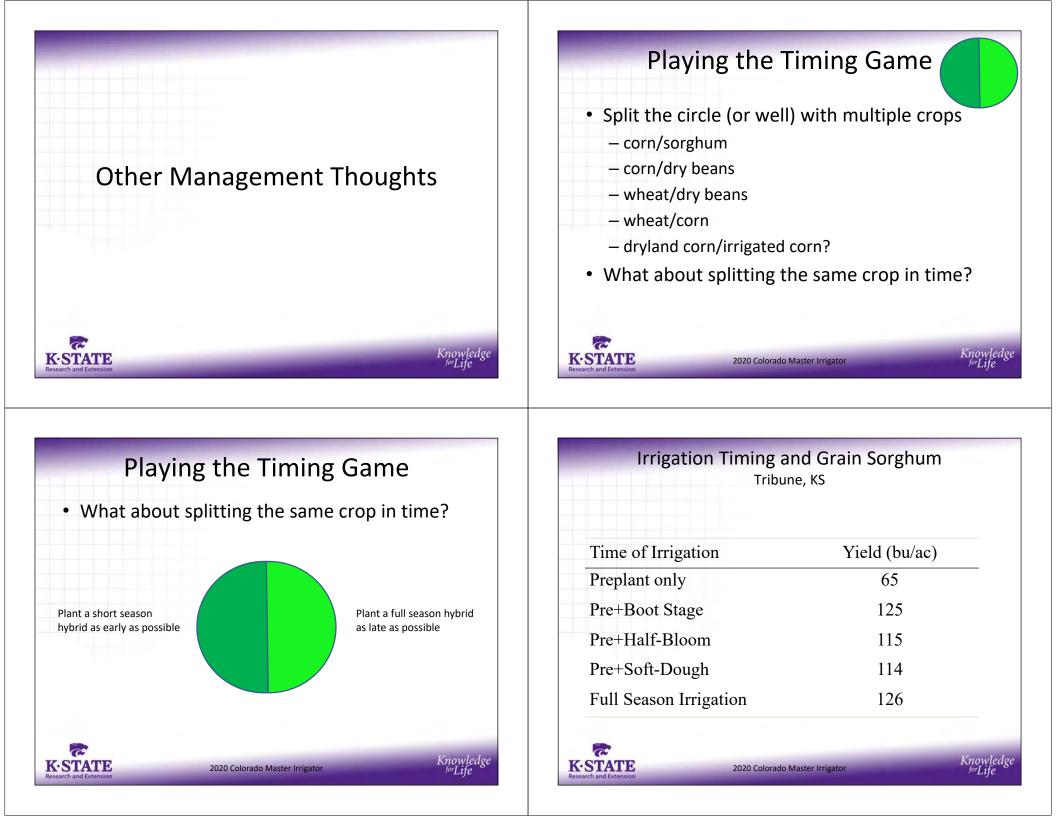
A side track on hybrids....

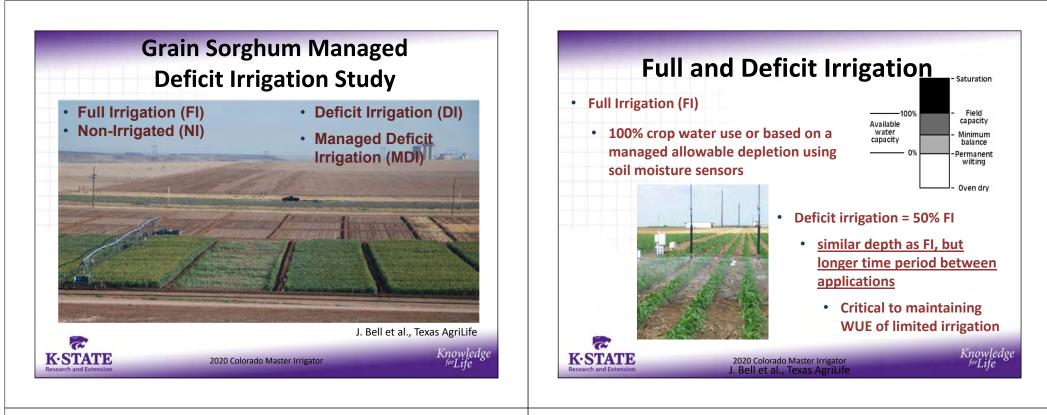
- The previous work was done with one commercial hybrid
- We know hybrids response to water and seeding rate can vary widely
 - E.g. Full irrigation at Colby, I seeded 4 hybrids at rates from 13k to 50k. There were some hybrids making close to 200 bu on 13k dropped
- Knowing your hybrids is going to be key to maximizing any limited irrigation/limited capacity scenario

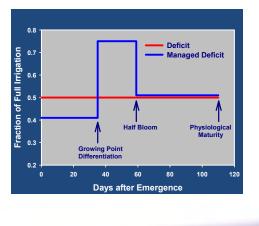
Grain Yield with Limited Irrigation 2008 and 2001-2008

Irrigation amount	Corn S	Sorghum	Soybean	Sunflower
inches		- bu/acre -		lb/acre
5	101 (<mark>113</mark>)	88 (<mark>94</mark>)	38 (<mark>31</mark>)	1660 (<mark>1800</mark>)
10	168 (172)	127 (111)	48 (<mark>42</mark>)	1950 (2080)
15	200 (201)	143 (123)	51 (47)	2500 (2160)
Yields in parenthesi	s are 2001-2	2008 avera	ge vields	


Table 5. Penalty to crop yields for center pivot irrigated cron production at 95% application efficiency when irrigation capacity is below 0.33 inches/day


(786 gpm/125 acres). Results are from simulations of irrigation scheduling and yield for the 33 years 1972-2004, Colby, Kansas.

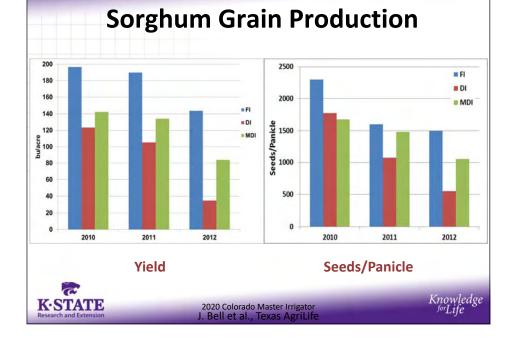

Equivalent irrigation capacities			Penalties to crop yield				
Inches /day	GPM /acre	Days to apply 1 inch	GPM/125 acres	Corn Yield, bu/a	G. Sorghum Yield, bu/a	Soybean Yield, bu/a	Sunflower yield, lb/a
0.333	6.29	3	786	0	0	0	0
0.250	4.71	4	589	3	0	0	2
0.200	3.77	5	471	15	2	4	98
0.167	3.14	6	393	27	6	8	202
0.125	2.36	8	295	46	13	15	380
0.100	1.89	10	236	59	18	19	512
	N	o Irrigation		128	54	41	1242

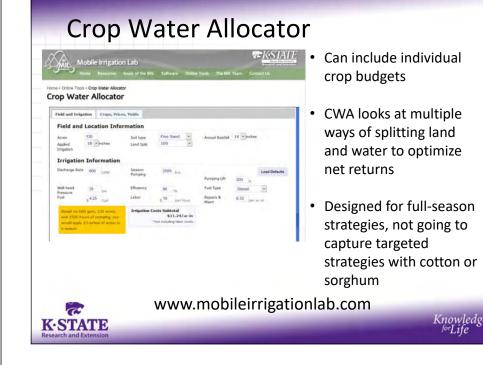


Managed Deficit Irrigation

- 1. Eliminate 1-2 early season irrigation events compared with DI
- 2. Differentiation to half bloom, irrigation scheduled at 75% Fl
- 3. Half bloom to maturity, irrigation scheduled at 50%FI
- 4. Must have the well capacity to apply greater depth during critical growth periods.

2020 Colorado Master Irrigator J. Bell et al., Texas AgriLife


K·STATE


Crop water use and grain sorghum yield for an average year (2010) and an extreme year (2011) at Bushland, TX) (Bell, 2014)

Treatment	Irrigation	Rainfall	Soil water	Total Water	Yield	WUE
2010		Inches o	of water		bu/acre	bu/inch
Full Irrigation	12.7	7.1	1.8	21.6	198	9.2
Managed Deficit (MDI)	6.5	7.1	3.6	17.2	142	8.3
Deficit (DI)	5.7	7.1	3.1	15.9	123	7.7
2011						
Full Irrigation	24.0	2.4	-1.1	25.3	190	7.5
Managed Deficit (MDI)	15.3	2.4	0.2	17.9	132	7.4
Deficit (DI)	13.1	2.4	0.9	16.4	106	6.5
	the file	-100	and the second	111	and the second second	
A. C.			Parine V			

2020 Colorado Master Irrigator J. Bell et al., Texas AgriLife

Where do I see opportunities:

- Edges of the season
 - Technology can help with this
- Use of key timings in responsive crops
 - Sorghum, cotton, what else? There has been very little research on limited or timed irrigation of some crops, e.g. dry beans
- There is still a place for irrigation scheduling, even under limited well capacities
- Pre-season irrigation is a tool, <u>but</u> we must be smart with it

Phone: (785) 462-6281 Email: LHaag@ksu.edu

www.northwest.ksu.edu/agronomy

Twitter: @LucasAHaag

www.facebook.com/NWKSagronomy

Limited Irrigation -Soil and Water Management Joel Schneekloth Regional Water Resources Specialist, Colorado State University Joel.schneekloth@colostate.edu / (970) 345-0508

As well capacities decrease over time, it is increasing important to manage both precipitation and irrigation appropriately to maximize the use of both. This discussion will include both impacts of residue management on soil moisture, precipitation capture and infiltration. A secondary discussion will be about water management of spreading or concentrating irrigation water for yield.

Residue Management

As most know, residue management in dryland agriculture is an important part of water management. Limited irrigation can be described as an intensively managed dryland production system at times. During tough economic times, residue can have value as it is harvested for the livestock industry. However, there is an economic cost in both water and nutrients that must be factored into the economic discussion.

Having standing residue in our environment can significantly increase the capture of snow during the winter months. Many times, snow is also accompanied by wind (blizzards) which can move the snow to areas that not desirable. Figure 1 shows the differences between having standing residue in a field vs residue that has been harvested. Standing residue increased precipitation storage efficiency by 20+% in each of the three years measured. The greatest difference was in 2019 where residue harvest resulted in storage of less than 20% of the precipitation from October to April.

The impact of storing more precipitation over the winter results in greater beginning soil moisture available to the next crop and can reduce irrigation needs. Figure 2 shows the beginning soil moisture prior to planting and tillage. On average, no-till and leaving residue showed the greatest available moisture at planting compared to the other treatments. The greatest impact is leaving standing residue over the winter. The average difference over the 3 years was 1.6" more moisture at planting with residue vs harvested residue. As you can see, the difference between residue harvest and leaving the residue increased in each of the 3 years. In year 3, the difference was nearly 2.5" more moisture where the residue remained. Depending upon precipitation, residue can significantly reduce irrigation needs.

Another factor of residue and tillage is infiltration rates. This work is done with an infiltrometer at a set application rate measuring the amount applied, amount of runoff and times. With this equipment, we can develop an infiltration curve which is important in estimating runoff potential with an intensive precipitation event or what type of sprinkler system you can utilize.

Figure 3 shows the total infiltration for 2 tillage and 2 residue management treatment with fall harvested residue or not, and tillage prior to planting or no-till management. Residue was a significant factor in increasing infiltration rates whether it was left on the surface or tilled into the soil in a conservation practice. Tillage did have a significant impact when residue was removed.

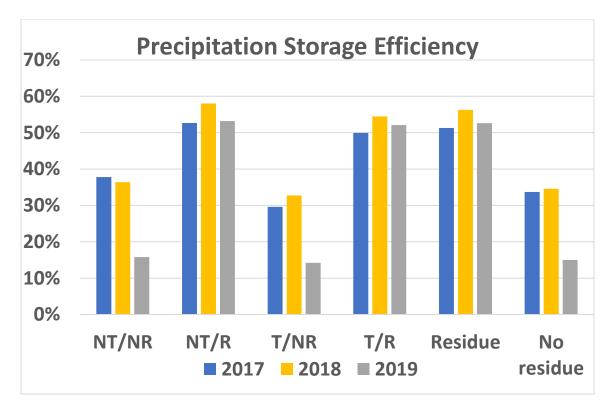


Figure 1. Precipitation storage efficiency of 4 tillage and residue management practices.

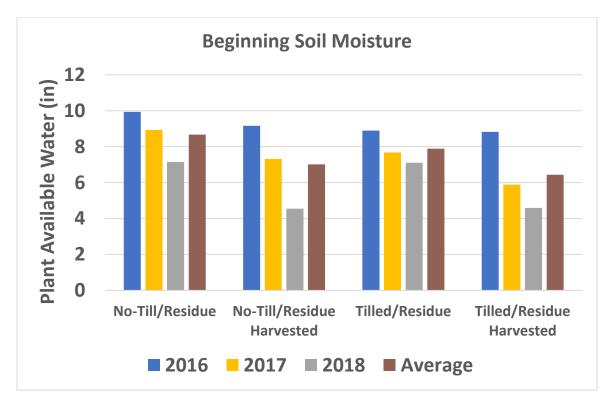


Figure 2. Beginning soil moisture contents at planting of 4 tillage and residue management practices.

Total infiltration in 30 minutes for fields where residue was not harvested average 2.9" while residue harvest decreased infiltration to 2.2". In years 1 & 2 of this study, tilled with residue tended to be the highest infiltration. However, by year 3, no-till with residue tended to be greater infiltration. This may be due to increased soil surface aggregation at that point in time. When residue is harvested, it appears that tillage does increase the total infiltration. Over time, soil surface aggregation deteriorates which decreases infiltration.

Over time, the differences in infiltration between no-till and tilled with residue increased where early measurements favored tillage. However, as soil structure changed, the differences infiltration favored no-till. This does show that time is needed to change those structural differences.

Figure 4 shows the steady state infiltration rates which are the longer-term rates you would expect during long precipitation events. This measurement favored no-till with the residue remaining in the field. Steady state estimates showed the potential for nearly 3.5" of infiltration per hour with no-till and residue. All other treatments with tillage and residue were between 2 and 2.5" per hour of infiltration.

Utilizing the infiltrometer, we can develop an infiltration curve to look at the changes in infiltration over time. In Figure 5, this shows how quickly infiltration decreases. The majority of infiltration occurs in the first 5 minutes of time at which infiltration decreases and approaches the steady state. You can see the differences between residue and tillage management within this curve.

These reading show the potential infiltration capacity of the soil. However, under normal circumstances, infiltration deteriorates quickly with small amounts of water applied. In Figure 5, a typical application curve shows the application time of an irrigation system with a 15 ft wetted diameter and a capacity of 600 gpm. The areas of this curve above the infiltration curves show the potential runoff that must be managed. Residue management decreases the potential runoff but still does not eliminate it. Soil surface storage is an important factor but decreases with slope which will increase runoff.

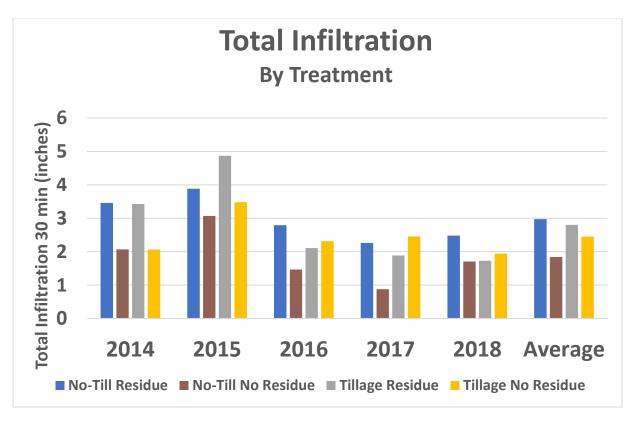


Figure 3. Total infiltration over a 30 minute period.

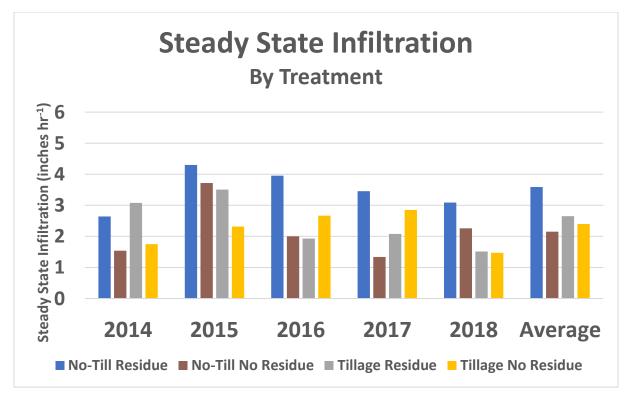


Figure 4. Steady state estimates for tillage and residue management.

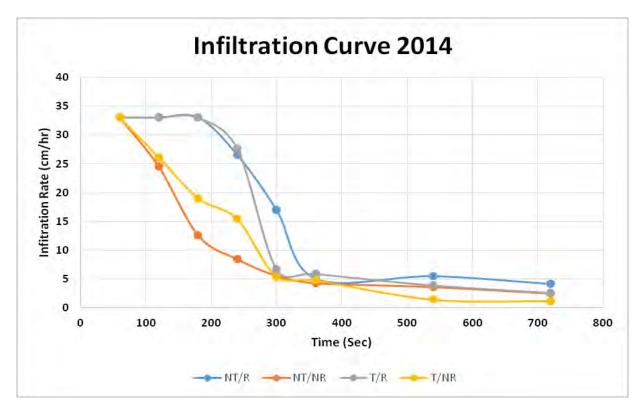
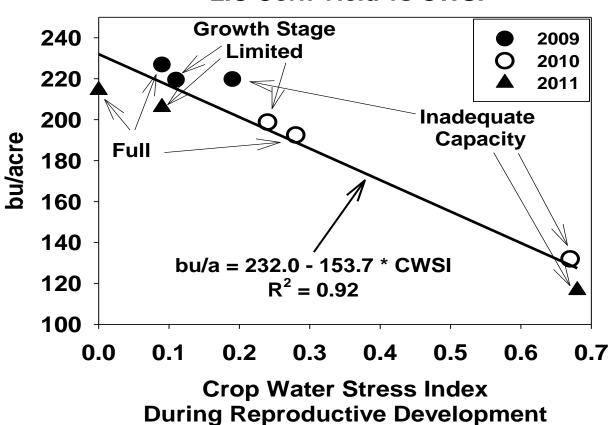


Figure 5. Infiltration curves for tillage and residue management practices.

Irrigation Management Decisions

Another factor in limited irrigation management is based upon either capacity, quantity, or both. Each has a set of unique decision. This will be a discussion of over 30 years of experience in limited irrigation strategies and management.

Plant Populations


There always has been discussions of the impact of too high of populations with limited water management. However, I have rarely seen a decrease in yield with too great of a population. Lowering populations should be done accordingly to the expected grain yield of the field with the conditions that you see. This is generally, a purely economic decision. Planting more seeds than necessary is a cost that will not be recovered unless weather patterns change substantially with above average precipitation. Seed corn prices historically cost between \$3 and \$4 per thousand. However, remember that a yield increase of 0.5 bu/ac at todays price of corn can pay for that seed cost. A significant reduction in population can decrease costs but can also limit the upper yield potential if conditions improve.

Water Management Strategies

Water management strategies with a limited capacity well are very much a personal decision. You can irrigate the entire acres with an increased time between irrigations. You can reduce acres which will appear as an increased capacity per acre and irrigation frequency decreases. Many times, if quantity is not severely limiting, the management strategy is to turn on irrigation and only shut off for a significant

precipitation event. One of the major issues is that if below average precipitation occurs during the growing season, water stress will increase during the season and typically will be the greatest during the most critical time-period, reproductive. Figure 6 shows the yield impact of water stress during the reproductive growth stages of a 50% capacity system compared to full irrigation or a growth stage management strategy. Full irrigation or growth stage management must reduce irrigated acres to increase capacity per irrigated acre of corn.

In years such as 2009 where adequate precipitation occurred during the reproductive growth stage, a 50% capacity appeared to be the correct management practice because little impact to yield was observed. However, in years such as 2010 and 2011, you can observe that yields of the 50% irrigation capacity were less than 70% of an adequate capacity and in 2011, yields were less than 60% of full irrigation.

LIC Corn Yield vs CWSI

Figure 6. Impact of crop water stress at the reproductive growth stage on grain yield.

Over the years, we have conducted 2 large scale irrigation management on-farm demonstrations. These demonstrations are costly to conduct as you must pay for anticipated yield reductions to the producers. However, these demonstrations can be valuable to producers as they show what the potential yields are for different management strategies in a real-world situation in several locations. To researchers, these demonstrations can show that the research conducted in one location can be taken to other locations with minor changes.

In the late 1990's, a multi-farm demonstration was conducted in SW Nebraska with producers at 4 locations: Arapahoe, Benkelman, Elsie and Dickens. Yield results over the 6 year demonstration are shown in Figure 7. Four irrigation management strategies were observed over years: Farmer management, Best Management Practices, Growth Stage and an Allocation. The major comparison would show the differences between farmer/consultant management and following BMP management practices. The other comparisons were to show the impact of water stress utilizing 2 irrigation strategies to limit irrigation during the vegetative growth stage and a strict allocation.

The allocation was chosen due to the declines in the Ogallala Aquifer and research in that region showing that pumping of 6 inches or less was required to maintain aquifer levels.

Overall, improving irrigation management strategies did not decrease yields between farmer management and BMP but did decrease the amount of water applied by over 1.5" per year or close to 10%. However, this can be deceiving as farmer management generally became closer to BMP management as the years progressed. A second concern of producers showing that stress during the vegetative growth stage really has minor to no major yield impact in many years with average precipitation but can reduce irrigation applied. Grain yields overall decreased by 5% with a 20% decrease in irrigation applied.

The allocation strategy was to show producers that even with strict restrictions, there was significant yield potential. Grain yields were reduced on average by 13% with a reduction in irrigation by 45% when irrigation could be applied to the reproductive stages in adequate amounts. The worst of the years for precipitation was 2000 at 2 locations. In that year, a reduction in irrigation of 49% resulted in a yield of 70% of full irrigation. Precipitation at both locations was under 6 inches for the growing season.

A similar irrigation demonstration was conducted in Burlington, CO in the mid 2000's. Results of that demonstration were similar to that of the previous demonstration over the 3 years of that demonstration.

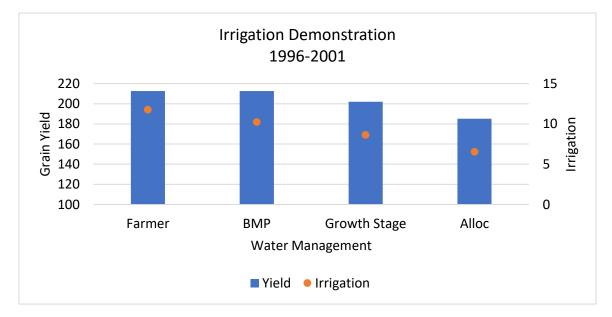


Figure 7. Grain yields and irrigation amounts for different irrigation management strategies for an onfarm demonstration in the late 1990's in Nebraska. A similar research study was conducted for furrow irrigation at the same time. This study utilized all management strategies that would improve irrigation efficiency for furrow irrigation. They included ridge-till, furrow packing, surge irrigation and shortening furrow length to 1,100 feet. With improved management, irrigation efficiencies can be very high with furrow irrigation but at the cost of time for management which would typically reduce the number of acres a producer could farm.

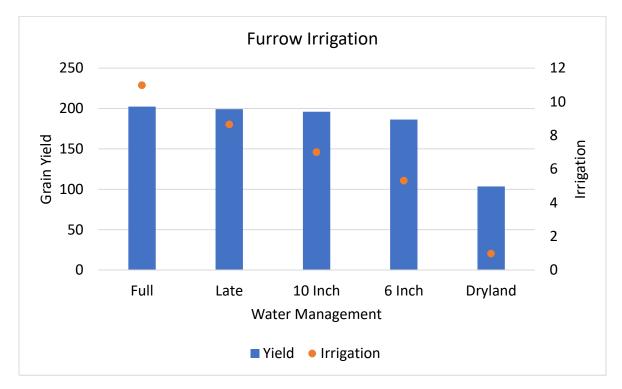


Figure 8. Grain yields and irrigation amounts for a furrow irrigation study.

These are just a few observations I have seen over 30+ years of limited irrigation management in the High Plains. There is no one correct answer to these management decisions as every producer and field can be different. However, some of the information observed over the years and locations has shown that with improved management, there are potential positive impacts that can happen with small changes over time.

One of the major factors that can't be discussed is the differences in risk that occur with strategies or tolerance to risk between farmers. Risk is always present must be managed.

CORN

G09Y24

Brands Available: G09Y24-DV

G09Y24-V E109Y2-D

Exciting Genetics with Artesian Technology

- · Maximizes yield when it rains; increases yield potential when it doesn't
- · Population flexibility across all environments
- Top-end yield potential with stability when conditions are tough

Silk

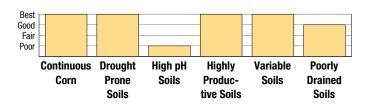
Viptera Duracade Viptera Artesian

Agronomic Characteristics

Emergence	;				1			
Seedling Vi	gor							L
Root Streng	gth							L
Stalk Stren	gth							L
Green Snap	C							L
Staygreen								L
Drydown								L
Test Weigh	t							L
Blunt Ear	(-)							L
Drought Se	ason-l	Long	Protec	tion	1			
9 8	8 7	· f	3 !	5	4	3	2 ве	ST
5 0	, ,		<i>,</i>	,	•	<i>,</i> , , , , , , , , , , , , , , , , , ,		5.

Disease Tolerance

RM:


109

5
2
4
4
4
3
-
4
5
-
5

Plant & Ear Characteristics

Plant Height	Ear Height	Ear Flex	Cob Color	Husk Cover	Leaf Type	Root Type
5	3	Semi-Flex	Red	Medium	Semi-Upright	Modified

Performance In...

Seeding Rates

Yield Environment	Target Seeds/Ac	More info:
280 bu/Ac 240 bu/Ac 200 bu/Ac	34,000 31,000 28,500	
160 bu/Ac 120 bu/Ac	26,000 23,500	

For more info or to view product performance data:

1-9 Scale: 1 = Best, Tallest or Highest; 9 = Worst, Shortest or Lowest; (-) = Not Available.

goldenharvestseeds.com (800) 944-7333

Seed products with the LibertyLink® (LL) trait are resistant to the herbicide glutosinate ammonium, an alternative to glyphosate in corn and soybears, and combine high-yielding genetics, with the powerful, non-selective, postemergent weed control of Liberty® herbicide for optimum yield and excellent weed control.

©2022 Syngenta. Important: Always read and follow label and bag tag instructions; only those labeled as tolerant to glufosinate may be sprayed with glufosinate ammonium-based herbicides. The trademarks or service marks displayed or otherwise used herebicides and follow label and bag tag instructions; only those labeled as tolerant to glufosinate may be sprayed with glufosinate ammonium-based herbicides. The trademarks or service marks displayed or otherwise used herebicides. The trademarks or service marks displayed or otherwise used herebicides. The trademarks or service marks displayed or otherwise used herebicides. The trademarks or service marks displayed or otherwise used herebicides. The trademarks displayed or otherwise used herebicides. The trademarks or service marks displayed or otherwise used herebicides. The trademarks or service marks displayed or otherwise used herebicides. The trademarks or service marks displayed or otherwise used herebicides. The trademarks or service marks displayed or otherwise used herebicides. The trademarks or service marks displayed or otherwise used herebicides. The trademarks or service marks displayed or otherwise used herebicides. The trademarks or service marks displayed or otherwise used herebicides. The trademarks or service marks displayed or otherwise used herebicides. The trademarks or service marks displayed or otherwise used herebicides. The trademarks or service marks displayed or otherwise used herebicides. The trademarks or service marks of the trademarks are the property of their respective owners.

Black Layer

G10L16

Emergence Seedling Vigor Root Strength Stalk Strength Green Snap Staygreen Drydown **Test Weight** Blunt Ear (-)

9

8

Brands Available: G10L16-DV

G10L16-V G10L16A (Conv.)

Industry-leading Yield Potential Across All Acres

- Leading drought tolerance powered by Artesian technology
- Moderate plant structure for residue management •
- Excellent drydown for an early harvest option

Agronomic Characteristics

Olik	DIACK Layer			
RM: 109	RM: 113			
GDU: 1395	GDU: 2620			
Duracade Viptera				

tesian

Disease Tolerance

RM:

110

Gray Leaf Spot	4
Northern Corn Leaf Blight	6
Goss's Wilt	3
Bacterial Leaf Streak	3
Southern Corn Leaf Blight	4
Eyespot	3
Anthracnose Stalk Rot	-
Tar Spot	4
Fusarium Crown Rot	4
Common Rust	7
Southern Rust	4

Plant & Ear Characteristics

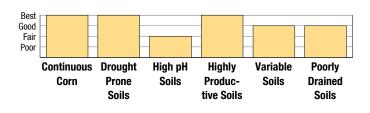
6

5

4

3

2


BEST

Drought Season-Long Protection

7

Plant Height	Ear Height	Ear Flex	Cob Color	Husk Cover	Leaf Type	Root Type
5	6	Semi-Flex	Red	Medium	Semi-Upright	Modified

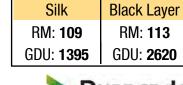
Performance In...

Seeding Rates

Yield Environment	Target Seeds/Ac	More info:
280 bu/Ac 240 bu/Ac	34,500 33,000	
200 bu/Ac	32,000	
160 bu/Ac 120 bu/Ac	30,500 25,500	

For more info or to view product performance data: goldenharvestseeds.com (800) 944-7333

1-9 Scale: 1 = Best, Tallest or Highest; 9 = Worst, Shortest or Lowest; (-) = Not Available.


Seed products with the LibertyLink® (LL) trait are resistant to the herbicide glulosinate ammonium, an alternative to glyphosate in corn and soybcans, and comibine high-ytelding genetics with the powerful, non-selective, postemergent weed control of Liberty® herbicide for optimum yield and excellent weed control. \heartsuit

Ratings are based on interpretation of data gathered by Syngenta and/or observations across areas of adaptation and may change as additional data are gathered. Product performance assumes disease presence

©2022 Syngenta. Important: Always read and follow label and bag tag instructions; only those labeled as tolerant to glufosinate may be sprayed with glufosinate ammonium-based herbicides. The trademarks or service marks displayed or otherwise used herein are the property of a Syngenta Group Company. LibertyLink®, Liberty® and the Water Droplet logo are registered trademarks of BASF. HERCULEX Shield are trademarks of Corteva Agriscience LLC. HERCULEX Insect Protection technology by Corteva Agriscience LLC. All other trademarks are the property of their respective ow

Published April 29.	2022 For	use until	Anril 30	2023

CORN

G13N18

<u>RM:</u>	
113	

Silk	Black Layer
RM: 112	RM: 113
GDU: 1415	GDU: 2630

Brands Available: G13N18-3111

E113N8-3000GT

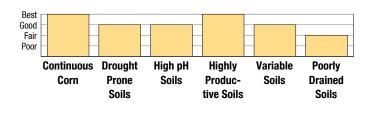
Excellent Tolerance to Heat and Moisture Stress with

Western Adaptation

- · Excels in high-management acres of the Western Corn Belt
- · Solid performance in drought-prone and variable soil types
- Rapid drydown contributes to ease of harvest

Emergence			1			
Seedling Vigor	1	1	1			
Root Strength	1	1				
Stalk Strength						
Green Snap		1				
Staygreen	1	1				
Drydown	-	1				
Test Weight						
Blunt Ear (-)						
Drought						
9 8	7	6	5	4 :	3 2	2 BES

Agronomic Characteristics


Disease Tolerance

Gray Leaf Spot	6
Northern Corn Leaf Blight	4
Goss's Wilt	4
Bacterial Leaf Streak	5
Southern Corn Leaf Blight	2
Eyespot	6
Anthracnose Stalk Rot	4
Tar Spot	-
Fusarium Crown Rot	4
Common Rust	3
Southern Rust	6

Plant & Ear Characteristics

Plant Height	Ear Height	Ear Flex	Cob Color	Husk Cover	Leaf Type	Root Type
4	5	Flex	White	Medium	Semi-Upright	Fibrous

Performance In...

Seeding Rates

Yield Environment	Target Seeds/Ac	More info:
280 bu/Ac 240 bu/Ac 200 bu/Ac 160 bu/Ac 120 bu/Ac	32,000 31,000 29,500 28,500 26,000	

For more info or to view product performance data: goldenharvestseeds.com

stseeds.com (800) 944-7333

Seed products with the LibertyLink(® (LL) trait are resistant to the herbicide glufosinate ammonium, an alternative to glyphosate in corn and soybeans, and combine high-yielding genetics with the powerful, non-selective, postemergent weed control of Liberty(® herbicide for optimum yield and excellent weed control.

Ratings are based on interpretation of data gathered by Syngenta and/or observations across areas of adaptation and may change as additional data are gathered. Product performance assumes disease presence.

©2022 Syngenta. Important: Aways read and follow label and bag tag instructions; only those labeled as tolerant to glutosinate may be sprayed with glutosinate ammonium-based herbioldes. The trademarks or service marks displayed or otherwise used herein are the property of a Syngenta Group Company. LibertyLink®, Liberty® and the Water Droplet logo are registered trademarks of BASF. All other trademarks are the property of their respective owners.

Trait versions with same base B01Z88Q™

101 RM

Top yield potential with wide adaptability across the Corn Belt.

Good stress emergence for cool, wet soil conditions.

Best performance observed in moderate to high yield environments.

Strong tolerance to Goss's wilt for areas of high risk.

Solid choice where green snap is a concern.

A fungicide is recommended in areas with heavy gray leaf spot or northern corn leaf blight.

YIELD ENVIRONMENTS

- **Highly Productive**
- Moderate
- Low

SOIL ADAPTABILITY

- Poorly Drained Soils
- Sandy Soils
- Clay Soils

AGRONOMICS

- 🔶 Stress Emergence
- Stalks
- Roots
- Green Snap
- Stay Green ~
- Drought Tolerance
- High pH Soil Tolerance
- Test Weight
- Husk Cover

CROP MANAGEMENT

🔶 Early Planting

CROP ROTATION

- 💿 Continuous Corn
- Corn / Soybean

DISEASE TOLERANCE

- Gray Leaf Spot
- 📀 NCLB
- Tar Spot
- Goss's Wilt
- NA SCLB
- NA S. Corn Rust
- Anthracnose Stalk Rot o
- Fusarium Ear Rot
- Diplodia Ear Rot
- Giberella Ear Rot

IMPORTANT: Characteristic scores provide key information useful in selecting and managing products in your area. Information and ratings are based on comparisons with other products sold by Brevant seeds. Ratings denoted with an asterisk (*) reflect preliminary data subject to change when additional data becomes available.

Information and scores are assigned by Brevant Seeds and are based on period-of-years testing through 2021 harvest and were the latest available at time of printing. Some scores may change after 2022 harvest. Scores represent an average of performance data across areas of adaptation, multiple growing conditions, and a wide range of both climate and soil types, and may not predict future results. Individual product responses are variable and subject to a variety of environmental, disease and pest pressures. Please use this information as only one component of your product positioning decision.

CHARACTERISTICS

Relative Maturity Range.	
GDUs to Mid-Silk	1260
GDUs to Black Layer	
Plant Height	Medium
Ear Height	. Moderately Low
Ear Flex	Semi-Flex
Cob Color	Red

HERBICIDE TOLERANCES

KEY

- 🔶 Highly Suitable Key Strength
- **Suitable Meets Standards**
- Manage Appropriately
- 🔀 Strong Caution Limitation
- NA. Rating Not Available

Late Planting

- **Delayed Harvest**

Broadly adapted across most soil types and yield environments.

Optimum[®] AQUAmax[®] hybrid for drought-prone geographies.

A fungicide is recommended in areas high risk to gray leaf spot.

Strong Goss's wilt and green snap for the West.

BREVANT. seeds

> Trait versions with same base B04Z92AM[™]

YIELD ENVIRONMENTS

- Highly Productive
- Moderate
- Low

SOIL ADAPTABILITY

- Poorly Drained Soils
- Sandy Soils
- Clay Soils

AGRONOMICS

- Stress Emergence
- Stalks
- Roots
- Green Snap
- Stay Green
- Drought Tolerance
- High pH Soil Tolerance
- Test Weight
- Husk Cover

CROP MANAGEMENT

- Early Planting
- Late Planting
- Delayed Harvest

CROP ROTATION

- Continuous Corn
- Corn / Soybean

DISEASE TOLERANCE

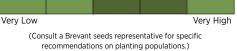
- Gray Leaf Spot
- NCLB
- Tar Spot
- Goss's Wilt
- NA SCLB
- NA S. Corn Rust
- Anthracnose Stalk Rot X
- Fusarium Ear Rot
- Diplodia Ear Rot
- Giberella Ear Rot

IMPORTANT: Characteristic scores provide key information useful in selecting and managing products in your area. Information and ratings are based on comparisons with other products sold by Brevant seeds. Ratings denoted with an asterisk (*) reflect preliminary data subject to change when additional data becomes available.

Information and scores are assigned by Br evant Seeds and a re based on period-of-years testing through 2021 harvest and were the latest available at time of printing. Some scores may change after 2022 harvest. Scores represent an average of performance data across areas of adaptation, multiple growing conditions, and a wide range of both climate and soil types, and may not predict future results. Individual product responses are variable and subject to a variety of environmental, disease and pest pressures. Please use this information as only one component of your product positioning decision.

CHARACTERISTICS

Relative Maturity Range	102-106
GDUs to Mid-Silk	1280
GDUs to Black Layer	2530
Plant Height	Medium-Short
Ear Height	Medium
Ear Flex	Semi-Flex
Cob Color	Pink


HERBICIDE TOLERANCES

KEY

- 🔶 Highly Suitable Key Strength
- Suitable Meets Standards
- Manage Appropriately
- 🔀 Strong Caution Limitation
- NA. Rating Not Available

POPULATION

104 RM

Exciting new Optimum[®] AcreMax[®] Leptra[®] + AQUAmax[®] hybrid for the central and western Corn Belt.

Optimum® AQUAmax® hybrid that provides very strong drought tolerance.

Excellent western traits including drought, green snap and Goss`s wilt tolerances.

Leptra $^{\circ}$ technology provides improved protection against earworm and cutworms for the shorter season maturity.

For optimal early season performance, avoid planting into very cold, wet soils.

A fungicide may be necessary for yield enviornments where gray leaf spot pressure is high.

YIELD ENVIRONMENTS

- Highly Productive
- 🔶 Moderate
- 🔶 Low

SOIL ADAPTABILITY

- Poorly Drained Soils
- 🚖 Sandy Soils
- Clay Soils

AGRONOMICS

- 🧿 Stress Emergence
- 🗸 Stalks
- 🚖 Roots
- 🔶 Green Snap
- 🧿 Stay Green
- 🔶 Drought Tolerance
- High pH Soil Tolerance
- 🗸 Test Weight
- Husk Cover

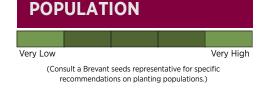
CROP MANAGEMENT

- 🔶 Early Planting
- Late Planting
- Delayed Harvest

CROP ROTATION

- 📀 Continuous Corn
- 🔶 Corn / Soybean

DISEASE TOLERANCE


- 🧿 Gray Leaf Spot
- 🔶 NCLB
- NA Tar Spot
- 🚖 Goss's Wilt
- NA SCLB
- NA S. Corn Rust
- Anthracnose Stalk Rot
- 📀 Fusarium Ear Rot
- 🔶 Diplodia Ear Rot
- NA Giberella Ear Rot

IMPORTANT: Characteristic scores provide key information useful in selecting and managing products in your area. Information and ratings are based on comparisons with other products sold by Brevant seeds. Ratings denoted with an asterisk (*) reflect preliminary data subject to change when additional data becomes available.

Information and scores are assigned by Br evant Seeds and are based on period-of-years testing through 2021 harvest and were the latest available at time of printing. Some scores may change after 2022 harvest. Scores represent an average of performance data across areas of adaptation, multiple growing conditions, and a wide range of both climate and soil types, and may not predict future results. Individual product responses are variable and subject to a variety of environmental, disease and pest pressures. Please use this information as only one component of your product positioning decision.

CHARACTERISTICS

Relative Maturity Range	102-106
GDUs to Mid-Silk	1280
GDUs to Black Layer	
Plant Height	Medium
Ear Height	Moderately High
Ear Flex	Semi-Det.
Cob Color	Pink

HERBICIDE TOLERANCES

- 🔶 Highly Suitable Key Strength
- Suitable Meets Standards
- Manage Appropriately
- X Strong Caution Limitation
- NA. Rating Not Available

BREVANT. seeds

Trait versions with same base B04V12Q™

Trait versions with same base

B12C01AM[™] B12C01™

Exciting combination of high yield potential, strong agronomics and versatility to perform on a wide variety of acres.

Broadly adapted across most soil types, and yield environments.

Good ear flex allows adaptability across planting populations.

Optimum® AQUAmax® hybrid for drought-prone geographies.

Excellent stalks and roots combined with strong green snap and Goss`s wilt tolerance.

May require fungicide application in high-risk northern corn leaf blight or gray leaf spot environments.

YIELD ENVIRONMENTS

- Highly Productive
- Moderate
- Low

SOIL ADAPTABILITY

- Poorly Drained Soils
- Sandy Soils
- Clay Soils

AGRONOMICS

- Stress Emergence
- Stalks
- Roots
- Green Snap
- Stay Green
- Drought Tolerance
- High pH Soil Tolerance
- Test Weight
- Husk Cover

CROP MANAGEMENT

- Early Planting
- Late Planting
- Delayed Harvest

CROP ROTATION

- Continuous Corn
- Corn / Soybean

DISEASE TOLERANCE

- Gray Leaf Spot
- NCLB
- Tar Spot
- Goss's Wilt
- 🗙 SCLB
- 📀 S. Corn Rust
- Anthracnose Stalk Rot
- Fusarium Ear Rot O
- Diplodia Ear Rot Ô
- Giberella Ear Rot NA.

IMPORTANT: Characteristic scores provide key information useful in selecting and managing products in your area. Information and ratings are based on comparisons with other products sold by Brevant seeds. Ratings denoted with an asterisk (*) reflect preliminary data subject to change when additional data becomes available.

Information and scores are assigned by Brevant Seeds and are based on period-of-years testing through 2021 harvest and were the latest available at time of printing. Some scores may change after 2022 harvest. Scores represent an average of performance data across areas of adaptation, multiple growing conditions, and a wide range of both climate and soil types, and may not predict future results. Individual product responses are variable and subject to a variety of environmental, disease and pest pressures. Please use this information as only one component of your product positioning decision.

BREVANT.

seeds

POPULATION

Very Low			Very High
(Consult a Brevant seeds representative for specific			

recommendations on planting populations.)

FUNGICIDE RESPONSE Low High

CHARACTERISTICS

Relative Maturity Range	110-114
GDUs to Mid-Silk	1340
GDUs to Black Layer	
Plant Height	Medium
Ear Height	Moderately High
Ear Flex	Semi-Flex
Cob Color	Pink

HERBICIDE TOLERANCES

- 🔶 Highly Suitable Key Strength
- Suitable Meets Standards
- Manage Appropriately
- X Strong Caution Limitation
- NA. Rating Not Available

Widely adapted, stable product that competes well in most yield environments and stands out for overall agronomics.

An early silker with heavy test weight, solid agronomics and stability in both AM and Q versions.

Standability is a strength with above average stalks, roots and green snap.

Good gray leaf spot and northern corn leaf blight tolerance make it a good choice for fields with a history of these foliar diseases.

Excellent Goss`s wilt, drought tolerance and green snap scores for the western corn belt.

Top choice for continuous corn acres due to strong stalks, roots and gray leaf spot tolerance.

YIELD ENVIRONMENTS

- Highly Productive
- Moderate
- Low

SOIL ADAPTABILITY

- Poorly Drained Soils
- Sandy Soils
- Clay Soils

AGRONOMICS

- Stress Emergence
- Stalks
- Roots
- Green Snap
- Stay Green \mathbf{o}
- Drought Tolerance
- High pH Soil Tolerance NA.
- Test Weight
- Husk Cover

CROP MANAGEMENT

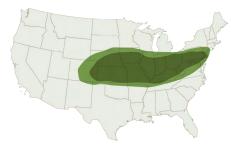
- Early Planting

CROP ROTATION

- 🖢 Continuous Corn

DISEASE TOLERANCE

- 🚖 Gray Leaf Spot
- NCLB
- Tar Spot
- Goss's Wilt
- SCLB Ó
- 📀 S. Corn Rust
- Anthracnose Stalk Rot
- Fusarium Ear Rot
- Diplodia Ear Rot
- Giberella Ear Rot NA.


IMPORTANT: Characteristic scores provide key information useful in selecting and managing products in your area. Information and ratings are based on comparisons with other products sold by Brevant seeds. Ratings denoted with an asterisk (*) reflect preliminary data subject to change when additional data becomes available.

Information and scores are assigned by Br evant Seeds and a re based on period-of-years testing through 2021 harvest and were the latest available at time of printing. Some scores may change after 2022 harvest. Scores represent an average of performance data across areas of adaptation, multiple growing conditions, and a wide range of both climate and soil types, and may not predict future results. Individual product responses are variable and subject to a variety of environmental, disease and pest pressures. Please use this information as only one component of your product positioning decision.

Trait versions with same base B12M18AM[™]

recommendations on planting populations.)

FUNGICIDE RESPONSE Low High

CHARACTERISTICS

Relative Maturity Range	110-114
GDUs to Mid-Silk	1380
GDUs to Black Layer	
Plant Height	Medium
Ear Height	Medium
Ear Flex	Semi-Flex
Cob Color	Pink

HERBICIDE TOLERANCES

KEY

- 🔶 Highly Suitable Key Strength
- Suitable Meets Standards
- Manage Appropriately
- X Strong Caution Limitation
- NA. Rating Not Available

Corn / Soybean

- Late Planting **Delayed Harvest**

104 RM

PRODUCT INFORMATION

LG54C76 is a high yielding semi-flex product that moves east to west very well. Solid agronomics with a great disease and health profile. Very versatile in placement and adaptation. Approved as HEC or food grade corn in some markets.

- Medium-tall plant with medium ear insertion, a longer ear with a dark red cob and open husk.
- Excellent emergence and early vigor. Superior roots. Above average Test Weight. Good fall intactness.
- Above average on stalk diseases. Very good on Goss's Wilt and Gray Leaf Spot. Average scores for NCLB.
- Scout for disease and apply fungicide if needed. Will respond to fungicide.

PLANT CHARACTERISTICS

Early Vigor
Stalk Strength 7
Root Strength
Greensnap
Drydown 7
Staygreen 8
Drought Tolerance 8
Test Weight 8
Harvest Appearance
Hard Endosperm Yes
GDD - Pollen
GDD - Silk
GDD - Black Layer 2590
Plant Height MT
Ear Height M
Ear Type SF
Flowering for Maturity MID NOTES

MANAGEMENT TIPS

Handles early planting and no-till/reduced till situations well. Recommend fungicide use when planted in continuous corn situations. Adapts well in zone, and both north and south of its adapted zone.

MANAGEMENT PRACTICES

Low Populations	8
Medium Populations	9
High Populations	6
Marginal Soil	8
Productive Soil	9
Continuous Corn	8
Adapt To No Till	9
Planting Rate	0

DISEASE RATINGS

Northern Leaf Blight	
Southern Leaf Blight	N/A
Gray Leaf Spot	
Goss's Bacterial Wilt	
Anthracnose	
Tar Spot	Moderately Susceptible
Common Rust	N/A
Southern Rust	7
Fungicide Response	High

HERBICIDE INTERACTION

None noted

9 = Excellent 1 = Poor N/A = Not Available NR = Not Recommended

Scores and characteristics are assigned by LG Seeds based on comparisons with similar maturity LG and competitive products through internal field testing. Performance may vary from location to location and from year to year, as local growing, soil and weather conditions may vary. Growers should evaluate data from multiple locations and years whenever possible and should consider the impacts of these conditions on the grower's fields. Always read and follow IRM, where applicable, grain marketing, stewardship practices, and pesticide label directions. LG Seeds Design® and We Mean Business® are registered trademarks of AgReliant Genetics, LLC. All other trademarks are the property of their respective owners. Visit www.lgseeds.com/technology for full product use restrictions.

LG58C77

CONVENTIONAL

PRODUCT INFORMATION

LG58C77 produces high yields from consistent, large, semi-flex ears with deep kernels that have good test weight grain. Shows very good stalk and root strength, staygreen and late season intactness. Silage Proven.

- High yielding product that is widely adapted east to west and can
 perform well in variable environments.
- Open husk allows for faster drydown in the fall and can lead to an earlier harvest.
- Excellent to very good ratings for most major leaf diseases; a good rating for Goss's Wilt.
- Superior early vigor and disease package allow flexibility at planting time.

PLANT CHARACTERISTICS

Early Vigor 8
Stalk Strength 8
Root Strength
Greensnap
Drydown 7
Staygreen 8
Drought Tolerance
Test Weight 7
Harvest Appearance
Hard Endosperm No
GDD - Pollen 1371
GDD - Silk
GDD - Black Layer 2743
Plant Height MT
Ear Height M
Ear TypeSF
Flowering for Maturity LATE NOTES

108 RM

MANAGEMENT TIPS

The Agrisure Duracade® 5222 E-Z Refuge® trait stack combines the above-ground insect control of the Agrisure Viptera® trait and the unique corn rootworm control of the Agrisure Duracade® trait. Best performance is on well-drained soils east to west across the Corn Belt. Late flowering with very good heat stress tolerance allows movement south of its maturity zone. Adapts well to corn-on-corn situations. The E-Z Refuge® component is glyphosate and glufosinate tolerant.

MANAGEMENT PRACTICES

Low Populations
Medium Populations
High Populations
Marginal Soil
Productive Soil
Continuous Corn
Adapt To No Till
Planting Rate 30-38,000

DISEASE RATINGS

Northern Leaf Blight	
Southern Leaf Blight	N/A
Gray Leaf Spot	
Goss's Bacterial Wilt	7
Anthracnose	7
Tar Spot	Tolerant
Common Rust	
Southern Rust	7
Fungicide Response	Moderate

HERBICIDE INTERACTION

None noted

9 = Excellent 1 = Poor N/A = Not Available NR = Not Recommended

Scores and characteristics are assigned by LG Seeds based on comparisons with similar maturity LG and competitive products through internal field testing. Performance may vary from location to location and from year to year, as local growing, soil and weather conditions may vary. Growers should evaluate data from multiple locations and years whenever possible and should consider the impacts of these conditions on the grower's fields. Always read and follow IRM, where applicable, grain marketing, stewardship practices, and pesticide label directions. LG Seeds Design® and We Mean Business® are registered trademarks of AgReliant Genetics, LLC. All other trademarks are the property of their respective owners. Visit www.lgseeds.com/technology for full product use restrictions.

LG60C12

PRODUCT INFORMATION

LG60C12 is a full flex ear hybrid with excellent western, southern, and low population adaptation. Very good ear girth with excellent ear flex associated with this product. Has dual purpose possibilities for both grain and silage.

- Exceptional yield for maturity, even at lower plant populations.
- Larger plant style with good heat tolerance and very good husk cover.
- Above average Goss's Wilt, average GLS and NCLB.
- A fungicide application will likely provide benefit for disease protection and late season stalk intactness.

PLANT CHARACTERISTICS

Early Vigor 7
Stalk Strength 7
Root Strength 6
Greensnap
Drydown 7
Staygreen 8
Drought Tolerance
Test Weight 7
Harvest Appearance
Hard Endosperm No
GDD - Pollen
GDD - Silk
GDD - Black Layer 2760
Plant Height T
Ear Height H
Ear Type F
Flowering for Maturity MID

MANAGEMENT TIPS

The Agrisure Duracade[®] 5222A E-Z Refuge[®] trait stack and Agrisure Viptera[®] 3330A E-Z Refuge[®] trait stack options provide outstanding insect control for growers. Well adapted for planting in the high plains dryland environments. Manage fertility for high yields at low to moderate populations. Place on adequately drained soils at moderate populations. Use as an early hybrid south or in lower population environments. Fungicides recommended when planted corn-on-corn. The E-Z Refuge[®] component will be glyphosate and glufosinate tolerant.

MANAGEMENT PRACTICES

Low Populations	9
Medium Populations	
High Populations	6
Marginal Soil	
Productive Soil	8
Continuous Corn	8
Adapt To No Till	8
Planting Rate	00

DISEASE RATINGS

Northern Leaf Blight 6
Southern Leaf BlightN/A
Gray Leaf Spot7
Goss's Bacterial Wilt7
Anthracnose
Tar Spot Tolerant
Common RustN/A
Southern Rust 4
Fungicide Response High

HERBICIDE INTERACTION

None noted

NOTES

9 = Excellent 1 = Poor N/A = Not Available NR = Not Recommended

Scores and characteristics are assigned by LG Seeds based on comparisons with similar maturity LG and competitive products through internal field testing. Performance may vary from location to location and from year to year, as local growing, soil and weather conditions may vary. Growers should evaluate data from multiple locations and years whenever possible and should consider the impacts of these conditions on the grower's fields. Always read and follow IRM, where applicable, grain marketing, stewardship practices, and pesticide label directions. LG Seeds Design® and We Mean Business® are registered trademarks of AgReliant Genetics, LLC. All other trademarks are the property of their respective owners. Visit www.lgseeds.com/technology for full product use restrictions.

110 RM

112 RM

PRODUCT INFORMATION

LG62C35 has very high yield potential with healthy plants and a standout season-long great look. This product is a first choice for maximum yield and stable performance over a wide range of environments.

- Really nice look with plants that stays green late-season and have prominent, showy ears.
- Strong emergence and plant vigor allow for early planting.
- Very high levels of both stalk and leaf disease tolerance, including Anthracnose, GLS, Goss's Wilt, and Southern Rust.
- · Conveys very good tolerance to ASR.

PLANT CHARACTERISTICS

Early Vigor 8
Stalk Strength 7
Root Strength 7
Greensnap 8
Drydown 8
Staygreen 8
Drought Tolerance
Test Weight 7
Harvest Appearance
Hard Endosperm No
GDD - Pollen 1400
GDD - Silk
GDD - Black Layer 2836
Plant Height MT
Ear Height M
Ear Type SF
Flowering for Maturity MID

MANAGEMENT TIPS

Longer, semi-flex ears will tolerate a wide range of populations. Responds favorably to irrigation. Healthy plants will benefit from inseason sidedress nitrogen applications. Fungicide applications should be infrequent and in combination with a field scouting program.

MANAGEMENT PRACTICES

Low Populations	
Medium Populations	r
High Populations	
Marginal Soil	
Productive Soil 9	
Continuous Corn	
Adapt To No Till 8	
Planting Rate 28-36,000	

DISEASE RATINGS

Northern Leaf Blight7
Southern Leaf Blight7
Gray Leaf Spot 8
Goss's Bacterial Wilt
Anthracnose
Tar Spot Moderately Tolerant
Common Rust7
Southern Rust 8
Fungicide Response High

HERBICIDE INTERACTION

Manage growth regulators

9 = Excellent 1 = Poor N/A = Not Available NR = Not Recommended

Scores and characteristics are assigned by LG Seeds based on comparisons with similar maturity LG and competitive products through internal field testing. Performance may vary from location to location and from year to year, as local growing, soil and weather conditions may vary. Growers should evaluate data from multiple locations and years whenever possible and should consider the impacts of these conditions on the grower's fields. Always read and follow IRM, where applicable, grain marketing, stewardship practices, and pesticide label directions. LG Seeds Design® and We Mean Business® are registered trademarks of AgReliant Genetics, LLC. All other trademarks are the property of their respective owners. Visit www.lgseeds.com/technology for full product use restrictions.

Corn Grain: **P0075Q** (Q,LL,RR2)

Additional Products in this Family: P0075AM (AM,LL,RR2) | P0075Q (Q,LL,RR2) | P0075

CRM:100	Positioning For:	SUITABILITY	Y RATINGS
Silk CRM: 103	0	KEY ENVIRONMENTS	
GDUs to Silk: 1280		Goss's Prone Fields	Highly Suitable
GDUs to Phy. Mat.: 2500		SUITABILITY	
		Late Harvest	Suitable
		Corn After Corn	Suitable
MANAGEMENT C	OMMENTS	SOILS	
		Early Planting/Cold Soils	Highly Suitable
· Exceptional Goss's Wilt to	olerance.	Coarse Textured Soils	Suitable
• Very good drought tolera	ance: works well on	Drought Prone Soils	Highly Suitable
fully irrigated to tough dry		Poorly Drained Soils	Highly Suitable
Good stress emergence		High pH Soils	Highly Suitable
cool soils.			

- · Good brittle stalk tolerance and strong roots.
- Moderate plant stature reduces residue.

REFUGE

Integrated Refuge 95% (RW, YGCB, HXX, LL, RR2)

5% (LL, RR2)

CHARACTERISTIC SCORES				
Drought Tol.	8			
Root Strength	6			
Stalk Strength	6			
Mid-Season Brittle Stalk	6			
Ear Ht.	5			
Plant Ht.	5			
Stress Emergence	6			
Hybrid Family	P0075			

DISEASE SCORES	
Goss`s Wilt	8
Gray Leaf Spot	5

TRAIT SCORE RATINGS: 9 = Excellent; 1 = Poor; Blank = Insufficient Data.

CRM:104

Silk CRM: 103 GDUs to Silk: 1280 GDUs to Phy. Mat.: 2530

MANAGEMENT COMMENTS

• Early season Optimum® AQUAmax® hybrid.

- · Excellent Goss's wilt tolerance for corn on corn acres.
- · Good brittle stalk tolerance.
- Above average plant stature with moderate ear height for tough acres & hills.
- Solid leaf disease package.

RE	FUGE
Inte	grated Refuge
•	95% (RW, YGCB, HXX, LL, RR2)
•	5% (LL, RR2)

Stalk Strength

Ear Ht.

Plant Ht.

Mid-Season Brittle Stalk

Stress Emergence

Hybrid Family

	SUITABILIT	Y RATINGS	
KEY ENVIRONMENTS			
Goss's Prone Fields		Highly Suitable	
SUITABILITY			
Late Harvest		Highly Suitable	
Corn After Corn		Highly Suitable	
SOILS			
Early Planting/Cold Soils		Highly Suitable	
Coarse Textured Soils		Highly Suitable	
Drought Prone Soils		Highly Suitable	
Poorly Drained Soils		Highly Suitable	
High pH Soils		Highly Suitable	
CHARACTERISTIC SCORES		DISEASE SCORES	
Drought Tol.	9	Goss`s Wilt	7
Root Strength	5	Gray Leaf Spot	5

5

6

6 7

6

P0487

TRAIT SCORE RATINGS: 9 = Excellent; 1 = Poor; Blank = Insufficient Data.

Corn Grain: P0404Q (Q,LL,RR2)

Additional Products in this Family: P0404Q (Q,LL,RR2) | P0404AM (AM,LL,RR2)

FR

CRM:104	Positioning For:	SU	ITABILIT	Y RATINGS		
Silk CRM: 100	C C	KEY ENVIRONMENTS				
GDUs to Silk: 1250		Goss's Prone Fields			Highly Su	uitable
GDUs to Phy. Mat.: 2450		SUITABILITY				
		Late Harvest			Suitable	
		Corn After Corn			Suitable	
MANAGEMENT C	OMMENTS	SOILS				
		Early Planting/Cold Soils			Suitable	
 Strong drought tolerance 	e allows placement	Coarse Textured Soils			Suitable	
on dryland and irrigated a	cres.	Drought Prone Soils			Highly Su	uitable
 Exceptional Goss's wilt to 	lerance and a good	Poorly Drained Soils			Suitable	
leaf disease package.	J	High pH Soils			Manage A	Appropriately
Strong roots with good bri	ttle stalk tolerance.	CHARACTERISTIC SCORES			DISEASE SCORE	c
 Average staygreen improvide 	es grain drydown.	CHARACTERISTIC SCORES			DISEASE SCORE	.
Avoid soil pH levels a	bove 7.9 for best	Drought Tol.	8	Goss`s Wilt		

· Avoid soil pH levels above 7.9 for best positioning and performance.

> REFUGE Integrated Refuge 95% (RW, YGCB, HXX, LL, RR2) 5% (LL, RR2)

Drought Tol. **Root Strength** Stalk Strength Mid-Season Brittle Stalk Ear Ht. Plant Ht. Stress Emergence P0404

6
5

TRAIT SCORE RATINGS: 9 = Excellent; 1 = Poor; Blank = Insufficient Data.

Corn Grain: **P0622Q** (Q,LL,RR2)

Additional Products in this Family: P0622Q (Q,LL,RR2) | P0622AML (AML,LL,RR2)

CRM:106

Silk CRM: 102 GDUs to Silk: 1270 GDUs to Phy. Mat.: 2550

MANAGEMENT COMMENTS

- Optimum AQUAmax product offering exceptional drought tolerance and good stability.
- Good mid-season brittle stalk tolerance.
- · Moderate plant stature with strong roots.
- · Consider fungicide applications in fields with a known history of severe Grey Leaf Spot pressure.

REFUGE Integrated Refuge 95% (RW, YGCB, HXX, LL, RR2) 5% (LL, RR2)

SUIT	ABILIT	Y RATINGS		
KEY ENVIRONMENTS				
Goss's Prone Fields			Suitable	
			Outtable	
SUITABILITY				
Late Harvest			Manage A	ppropriately
Corn After Corn			Suitable	
SOILS				
Early Planting/Cold Soils			Suitable	
Coarse Textured Soils			Suitable	
Drought Prone Soils			Highly Su	itable
Poorly Drained Soils			Suitable	
High pH Soils			Insufficien	it Data
CHARACTERISTIC SCORES			DISEASE SCORES	5
Drought Tol.	9	Goss`s Wilt		

7

5

6

5

4

5

P0622

Gray Leaf Spot

7

5

6

5

5

5

TRAIT SCORE RATINGS: 9 = Excellent; 1 = Poor; Blank = Insufficient Data.

PIONEER .

3

Hybrid Family

Root Strength

Stalk Strength

Ear Ht.

Plant Ht.

Mid-Season Brittle Stalk

Stress Emergence

Hybrid Family

Corn Grain: **P0995AM**

CRM:109

Silk CRM: 109 GDUs to Silk: 1360 GDUs to Phy. Mat.: 2580

Positioning For:

MANAGEMENT COMMENTS

- Exciting Optimum® AQUAmax® hybrid for dryland and irrigated environments.
- Strong leaf disease package.
- Excellent Goss's wilt tolerance.
- Good brittle stalk tolerance and strong lateseason plant health.
- Consider placement on freshly strip-tilled or conventional tilled fields due to average roots.
- Below average Fusarium ear rot; higher likelihood in years favorable to this pathogen should be considered.

SUITABILITY RATINGS			
KEY ENVIRONMENTS			
Goss's Prone Fields	Highly Suitable		
SUITABILITY			
Late Harvest	Highly Suitable		
Corn After Corn	Highly Suitable		
SOILS			
Early Planting/Cold Soils	Suitable		
Coarse Textured Soils	Highly Suitable		
Drought Prone Soils	Highly Suitable		

CHARACTERISTIC SCORES

Poorly Drained Soils

High pH Soils

Drought Tol.	9
Root Strength	5
Stalk Strength	5
Mid-Season Brittle Stalk	5
Ear Ht.	7
Plant Ht.	6
Stress Emergence	5
Hybrid Family	P0995

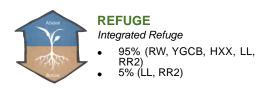
DISEASE SCORESGoss's Wilt7Gray Leaf Spot5

Suitable

Suitable

TRAIT SCORE RATINGS: 9 = Excellent; 1 = Poor; Blank = Insufficient Data.

Corn Grain: P1089AMXT (AMXT,LL,RR2)


CRM:110

Silk CRM: 109 GDUs to Silk: 1360 GDUs to Phy. Mat.: 2630

MANAGEMENT COMMENTS

- Optimum AQUAmax product offering exceptional drought tolerance and good stability.
- Excellent disease package reduces the likelihood of a foliar fungicide response.
- Impressive grain quality.
- Strong brittle stalk tolerance and very good late-season stalks.

SUITABILITY RATINGS		
KEY ENVIRONMENTS		
Goss's Prone Fields	Suitable	
SUITABILITY		
Late Harvest	Highly Suitable	
Corn After Corn	Highly Suitable	
SOILS		
Early Planting/Cold Soils	Highly Suitable	
Coarse Textured Soils	Suitable	
Drought Prone Soils	Highly Suitable	
Poorly Drained Soils	Suitable	
High pH Soils	Suitable	
CHARACTERISTIC SCORES	DISEASE SCORES	

CHARACTERISTIC S	CORES
Drought Tol.	9
Root Strength	4
Stalk Strength	6
Mid-Season Brittle Stalk	6
Ear Ht.	6
Plant Ht.	6
Stress Emergence	6
Hybrid Family	P1089

DISEASE SCC	DRES
Goss`s Wilt	6
Gray Leaf Spot	6

TRAIT SCORE RATINGS: 9 = Excellent; 1 = Poor; Blank = Insufficient Data.

Corn Grain: P1122AML* (AML,LL,RR2)

CRM:111

Silk CRM: 110 GDUs to Silk: 1370 GDUs to Phy. Mat.: 2680

Positioning For:

MANAGEMENT COMMENTS

- Early silking 111 CRM AQUAmax offering that includes Leptra insect protection technology for control of difficult above ground ear feeding insects.
- · Exceptional stress tolerance for the toughest dryland acres and minimal water applications but also performs well under higher yield environments.
- · Excellent late health coupled with good midseason brittle stalk resistance.
- · Strong disease package including very good Gosss wilt and Northern leaf blight tolerance.

REFUGE Integrated Refuge

95% (AVBL, YGCB, HX1, LL, RR2) 5% (LL, RR2)

SUITABILITY RATINGS **KEY ENVIRONMENTS** Goss's Prone Fields **Highly Suitable SUITABILITY Highly Suitable** Late Harvest Corn After Corn Highly Suitable

50IL5	
Early Planting/Cold Soils	Suitable
Coarse Textured Soils	Suitable
Drought Prone Soils	Highly Suitable
Poorly Drained Soils	Suitable
High pH Soils	Insufficient Data

CHARACTERISTIC SCORES		
Drought Tol.		9
Root Strength		5
Stalk Strength		5
Mid-Season Brittle Stalk		6
Ear Ht.		7
Plant Ht.		6
Stress Emergence		5
Hybrid Family		P1122

DISEASE SCORES Goss`s Wilt 7 Gray Leaf Spot 5

TRAIT SCORE RATINGS: 9 = Excellent; 1 = Poor; Blank = Insufficient Data.

Corn Grain: P1548AM (AM,LL,RR2)

CRM:115

Silk CRM: 112 GDUs to Silk: 1390 GDUs to Phy. Mat.: 2650

MANAGEMENT COMMENTS

- Full season Optimum® AQUAmax® best suited for tough to moderate yield levels.
- Excellent Goss's wilt tolerance with respectable gray leaf spot tolerance.
- Moderate plant stature with good ear placement.
- Slightly below average for FUSER.

Inte	egrated Refuge
•	95% (YGCB, HX1, LL, RR2)
•	5% (LL, RR2)

Ear Ht.

Plant Ht.

Stress Emergence Hybrid Family

	SUITABILIT	Y RATINGS		
KEY ENVIRONMENTS				
Goss's Prone Fields			Suitable	
SUITABILITY				
Late Harvest			Suitable	
Corn After Corn			Highly Suital	ble
SOILS				
Early Planting/Cold Soils			Suitable	
Coarse Textured Soils		Suitable		
Drought Prone Soils		Highly Suitable		ble
Poorly Drained Soils		Suitable		
High pH Soils		Suitable		
CHARACTERISTIC SCORE	ES	DIS	EASE SCORES	
Drought Tol.	9	Goss`s Wilt		7
Root Strength	6	Gray Leaf Spot		5
Stalk Strength	5			
Mid-Season Brittle Stalk	6	6 TRAIT SCORE RATINGS: 9 = Excellent; 1 = Poor; Blank		
Far Ht.	6	Insufficient Data.		

6

5

P1548

DKC56-65RIB **BRAND BLEND**

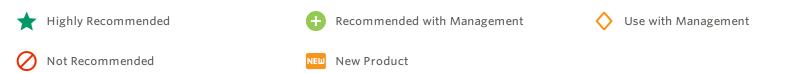
Relative Maturity

106

Trait

Key Strengths

- Product can provide very good emergence and seedling vigor for early planting
- Can provide utilization in field with known physoderma history
- Hybrid has shown food grade potential
- Has shown an attractive shorter plant profile with excellent root and stalk strength
- Has show good utilization in corn following corn rotations
- May benefit from a fungicide in heavy Gray Leaf Spot fields
- Position on medium to higher productivity soils for best performance


AGRONOMIC CHARACTERISTICS

GDUS TO BLACK LAYER	2650
EMERGENCE	2
ROOT STRENGTH	2
STALK STRENGTH	2
DROUGHT TOLERANCE	3
GREEN SNAP	3
PLANT HEIGHT	MED SHORT
EAR PLACEMENT	MED LOW
STAYGREEN	2
DRY DOWN	3
TEST WEIGHT	4
GRAY LEAF SPOT	5
GOSS'S WILT	0
SEEDLING GROWTH	2
LATE HARVEST	*
COARSE TEXTURE SOILS	\$
EARLY PLANTING	*
DRYLAND	0

LOCAL RECOMMENDED PLANTING RATE

160 - 200 BU/A	0
220 - 240 BU/A	*
240 - 280 BU/A	*

LOCAL KEY RATINGS

LEGEND

These ratings are approximate and should not be considered as absolute. Based on Monsanto conducted trials realtive to other DEKALB® brand corn.

Rating Scale: 1 = Excellent; 9 = Poor; - = None

Codes: L = Low; S = Short; M-S = Medium - Short; M = Medium; M-MH = Medium - Medium High; M-H = Medium High; M-L = Medium-Low; M-T = Medium Tall; MH-H = Medium High - High; T = Tall; H = High

Herbicide Tolerance

Ratings are based on observations and research using herbicides at labeled and above labeled rates to simulate extreme environmental conditions, misapplication and adverse soil pH or organic content.

A = Acceptable

Either no adverse effects from the corn product/herbicide combination were noted on any traits or only slight damage could be noted under adverse conditions or herbicide application at higher than label rates.

C = Caution

Give Feedback The corn product/herbicide combination is usually not a problem if sprayed according to label directions, but can result in plant height reduct stand loss and suspected yield loss under very adverse environmental conditions, high rates or extreme soil pH levels or organic content. Use drop nozzle spraying for postemergence herbicides to avoid interactions.

W = Warning

Not advised-this corn product/herbicide combination should not be used under any circumstances.

GDU (Growing Degree Unit)

Although maturity of one corn product relative to another remains reasonably constant, the actual number of calendar days from planting to any given point of plant development varies with temperature, day length, rate and date of planting, soil fertility and other environmental factors. All GDU values calculated are from the time of planting.

DKC107-33RIB BRAND BLEND

Relative Maturity

107

Trait

Genuity[®] SmartStax[®] PRO[®] RIB Complete[®] corn blend

Key Strengths

Has displayed strong yield potential across most yield levels

- Product has shown excellent yield to moisture ratio with ability to perform south of zone
- Excellent agronomic package combines solid root strength, stalk strength and greensnap tolerance
- Semi-fixed ear type; product has shown a positive response to increasing planting densities
- Product has demonstrated a positive response to in crop use of foliar fungicides
- Has shown very good emergence and seedling vigor for an early planting option
- Average staygreen and harvest appearance has been exhibited by this product
- Caution on Southern Rust tolerance when used

MANAGEMENT

VALUE ADDED TRAIT	SSPRIB
RELATIVE MATURITY	107
GDUS TO MID-POLLINATION	1315
GDUS TO BLACK LAYER	2695
PLANTING RATE	MED HIGH
DEKALB [®] DISEASE SHIELD [®]	-
NEW PRODUCT	YES

HARVEST

STAYGREEN	
HARVEST APPEARANCE	
DRYDOWN	
TEST WEIGHT	

PLANT DESCRIPTION

COB COLOR	RED
KERNEL CAP COLOR	YELLOW
KERNEL ROW	16
GROWTH	
EMERGENCE	2
SEEDLING GROWTH	3
ROOT STRENGTH	2
STALK STRENGTH	3
DROUGHT TOLERANCE	ack
GREENSNAP TOLERANCE	e Feedback
PLANT HEIGHT	ve Fe
EAR PLACEMENT	M

DISEASE RATINGS

ANTHRACNOSE LEAF BLIGHT	
GRAY LEAF SPOT	
SOUTHERN RUST	
ANTHRACNOSE STALK ROT	
GOSS'S WILT	
EYE SPOT	
NORTHERN CORN LEAF BLIGHT - RACE 1	
SOUTHERN CORN LEAF BLIGHT	

HERBICIDE

4

2

5

4

6

3

4

4

GROWTH REGULATORS SENSITIVITY	A
SULFONYLUREAS SENSITIVITY	A
ISOXAZOLES SENSITIVITY - PREEMERGENCE	A

in impacted geographies

- caution on southern Rust tolerance when used

STEWART'S LEAF BLIGHT	-
CORN LETHAL NECROSIS	-
COMMON RUST	3

DKC59-81RIB BRAND BLEND

Relative Maturity

Key Strengths

- Has shown very consistent ear development even under stress
- Can provide a good foliar disease tolerance package
- Very good greensnap and Goss's Wilt tolerance ratings
- Push plant populations to maximize yield potential
- Adapted to both dryland and irrigated environments
- Has shown stability across soil types

GRONOMIC	CHARACTERISTICS

4

GDUS TO BLACK LAYER	2725
EMERGENCE	3
ROOT STRENGTH	3
STALK STRENGTH	3
DROUGHT TOLERANCE	2
GREEN SNAP	2
PLANT HEIGHT	MED
EAR PLACEMENT	MED
STAYGREEN	3
DRY DOWN	3
TEST WEIGHT	4
GRAY LEAF SPOT	5
GOSS'S WILT	*
SEEDLING GROWTH	2
LATE HARVEST	*
COARSE TEXTURE SOILS	*
EARLY PLANTING	*
DRYLAND	0

LOCAL RECOMMENDED PLANTING RATE

160 - 200 BU/A	Ð
220 - 240 BU/A	*
240 - 280 BU/A	*

Notes

DKC61-40RIB BRAND BLEND

Relative Maturity

Trait

Key Strengths

- Has shown outstanding high yield potential across environments
- Very good Goss's Wilt tolerance for Western Corn Belt adaptation
- Appears to perform well, even in high pH soils
- Use caution when applying growth regulator herbicides
- Can provide excellent heat and drought stress performance
- Plant at moderate populations to capitilize on ear flex

A GRONOMIC	CHARACTERISTICS
AGRONOMIC	CHARACTERISTICS

GDUS TO BLACK LAYER	2775
EMERGENCE	1
ROOT STRENGTH	4
STALK STRENGTH	3
DROUGHT TOLERANCE	2
GREEN SNAP	3
PLANT HEIGHT	MED
EAR PLACEMENT	MED
STAYGREEN	5
DRY DOWN	2
TEST WEIGHT	6
GRAY LEAF SPOT	5
GOSS'S WILT	Ð
SEEDLING GROWTH	2
LATE HARVEST	\diamond
COARSE TEXTURE SOILS	*
EARLY PLANTING	*
DRYLAND	*

LOCAL RECOMMENDED PLANTING RATE

160 - 200 BU/A	*
220 - 240 BU/A	*
240 - 280 BU/A	*

Notes

DKC111-33RIB BRAND BLEND

Relative Maturity

111

Trait

Genuity[®] SmartStax[®] PRO[®] RIB Complete[®] corn blend

Key Strengths

Broadly adapted product that has shown high yield potential with movement north and south of zone

- Attractive, medium-tall statured plant features a semi-flex ear type with excellent test weight and good tip fill
- Medium-high plant populations are recommended for best results
- Impressive agronomic package with solid root strength, stalk strength, and greensnap tolerance
- Very strong Southern Rust tolerance

MANAGEMENT

VALUE ADDED TRAIT	SSPRIB
RELATIVE MATURITY	111
GDUS TO MID-POLLINATION	1335
GDUS TO BLACK LAYER	2800
PLANTING RATE	MED HIGH
DEKALB [®] DISEASE SHIELD [®]	-
NEW PRODUCT	YES

HARVEST

STAYGREEN
HARVEST APPEARANCE
DRYDOWN
TEST WEIGHT

PLANT DESCRIPTION

COB COLOR	RED
KERNEL CAP COLOR	YELLOW
KERNEL ROW	16
GROWTH	
EMERGENCE	3
SEEDLING GROWTH	3
ROOT STRENGTH	1
STALK STRENGTH	2
DROUGHT TOLERANCE	ack
GREENSNAP TOLERANCE	Give Feedback
PLANT HEIGHT	ME
EAR PLACEMENT	м

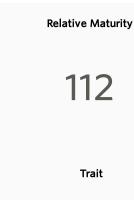
DISEASE RATINGS

ANTHRACNOSE LEAF BLIGHT	-
GRAY LEAF SPOT	4
SOUTHERN RUST	2
ANTHRACNOSE STALK ROT	5
GOSS'S WILT	5
EYE SPOT	-
NORTHERN CORN LEAF BLIGHT - RACE 1	5
SOUTHERN CORN LEAF BLIGHT	3

HERBICIDE

3

3


3

1

GROWTH REGULATORS SENSITIVITY	A
SULFONYLUREAS SENSITIVITY	A
ISOXAZOLES SENSITIVITY - PREEMERGENCE	A

	~
STEWART'S LEAF BLIGHT	-
CORN LETHAL NECROSIS	-
COMMON RUST	3

DKC62-69RIB **BRAND BLEND**

Key Strengths

- Attractive product with outstanding high yield potential across yield zones
- Very strong root and stalk strength
- Has shown a good overall disease tolerance package highlighted with very good Southern Rust and Southern Corn Leaf Blight tolerance
- · Hybrid has shown good drought stress for tough conditions
- Excellent fall intactness and harvest appearance
- Hybrid has exhibited excellent grain quality and test weight; high food grade potential
- Has shown very good Anthracnose Stalk Rot tolerance
- Can provide very good husk on a semi-flex ear type
- Has shown to be a slower drydown product

AGRONOMIC CHARACTERISTICS

GDUS TO BLACK LAYER	2835
EMERGENCE	3
ROOT STRENGTH	1
STALK STRENGTH	2
DROUGHT TOLERANCE	2
GREEN SNAP	3
PLANT HEIGHT	MED TALL
EAR PLACEMENT	MED
STAYGREEN	2
DRY DOWN	5
TEST WEIGHT	2
GRAY LEAF SPOT	5
GOSS'S WILT	5
SEEDLING GROWTH	2
LATE HARVEST	5
COARSE TEXTURE SOILS	5
EARLY PLANTING	5
DRYLAND	5

LOCAL RECOMMENDED PLANTING RATE

160 - 200 BU/A	26-28
220 - 240 BU/A	30-32
240 - 280 BU/A	32-34

DKC63-90RIB BRAND BLEND

Key Strengths

Has shown stable performance across environments

- Can stand well late into the season due to strong stalks and roots
- Has exhibited very good greensnap tolerance
- May benefit from a foliar fungicide in areas where Southern Rust is a concern
- Adaptable to both dryland and irrigated environments
- Can be planted across a range of populations

MANAGEMENT

VALUE ADDED TRAIT	SSRIB
RELATIVE MATURITY	113
GDUS TO MID-POLLINATION	1325
GDUS TO BLACK LAYER	2825
PLANTING RATE	MED HIGH
DEKALB [®] DISEASE SHIELD [®]	-
NEW PRODUCT	NO

HARVEST

STAYGREEN
HARVEST APPEARANCE
DRYDOWN
TEST WEIGHT

PLANT DESCRIPTION

COB COLOR	RED
KERNEL CAP COLOR	YELLOW
KERNEL ROW	18

GROWTH

3

4

5

5

6

4

3 2

EMERGENCE	3
SEEDLING GROWTH	2
ROOT STRENGTH	4
STALK STRENGTH	4
DROUGHT TOLERANCE	
GREENSNAP TOLERANCE	lback
PLANT HEIGHT	Feedba
EAR PLACEMENT	M Jive
	0

DISEASE RATINGS

ANTHRACNOSE LEAF BLIGHT
GRAY LEAF SPOT
SOUTHERN RUST
ANTHRACNOSE STALK ROT
GOSS'S WILT
EYE SPOT
NORTHERN CORN LEAF BLIGHT - RACE 1
SOUTHERN CORN LEAF BLIGHT

HERBICIDE

GROWTH REGULATORS SENSITIVITY	Α
SULFONYLUREAS SENSITIVITY	А
ISOXAZOLES SENSITIVITY - PREEMERGENCE	A

DKC64-64RIB BRAND BLEND

Relative Maturity

114

Trait

Key Strengths

- Broadly adapted through the 110 and 115 RM zone
- Has shown very good emergence and early season vigor
- Best positioned on medium to high yield environments
- Can provide very good greensnap tolerance and Goss's Wilt tolerance for western geographies
- Has shown very good stalk and root strength
- Has shown strong performance in corn following corn rotations
- A fungicide application may benefit performance in fields where Southern Rust is prominent

AGRONOMIC CHARACTERISTICS

GDUS TO BLACK LAYER	2835
EMERGENCE	3
ROOT STRENGTH	2
STALK STRENGTH	2
DROUGHT TOLERANCE	3
GREEN SNAP	3
PLANT HEIGHT	MED
EAR PLACEMENT	MED
STAYGREEN	3
DRY DOWN	3
TEST WEIGHT	4
GRAY LEAF SPOT	4
GOSS'S WILT	Ð
SEEDLING GROWTH	3
LATE HARVEST	Đ
COARSE TEXTURE SOILS	0
EARLY PLANTING	*
DRYLAND	\diamond

LOCAL RECOMMENDED PLANTING RATE

160 - 200 BU/A	0
220 - 240 BU/A	*
240 - 280 BU/A	*

Corn & Grain Sorghum Markets – Basis Issues KSU Ag Economics

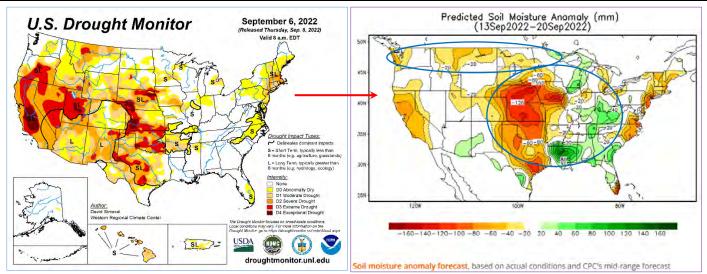
Daniel O'Brien, Extension Agricultural Economist ^{KSU}, Limit Irrigation Field Day, Tuesday, September 13, 2022

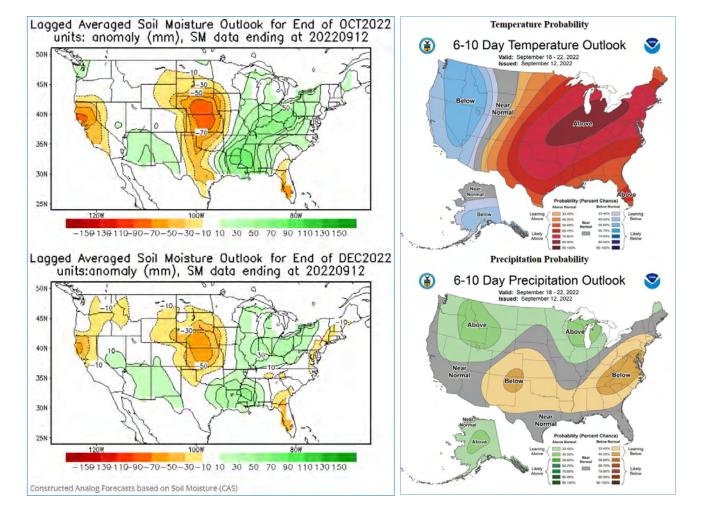
I. Grain Futures Closes, Changes & Market Carry on Tuesday, September 13, 2022 (10:00 a.m. CDT)

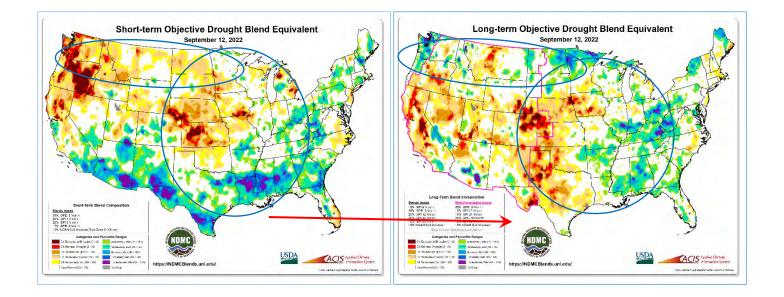
	Corn Futures				Soybean Futures				Kansas HRW Wheat Futures			
Month	Close	Change	Carry /mo	Month	Close	Change	Carry /mo	Month	Close	Change	Carry /mo	
Sept ^D 22	\$7.14 ³ ⁄4	압 \$0.02 ½		Sep ^D 22	\$15.50 ³ / ₄	압 \$0.01		Sept ^D 22	\$9.37 ¹ ⁄ ₄	압 \$0.08		
Dec ^{LH} 22	\$6.94 ¹ ⁄ ₄	↓ \$0.01 ³ ⁄ ₄	-\$0.06 ⁸³³	Nov ^{LH} 22	\$14.92	1 \$0.03 3/4	-\$0.29 ³⁷⁵	Dec ^L 22	\$9.37 ¹ ⁄ ₄	û \$0.10 ¼	No Carry	
Mar 23	\$6.98 ¹ / ₄	↓ \$0.01 ¼	+\$0.01 ³³³	Jan 23	\$14.96 ¹ ⁄4	압 \$0.04	+\$0.02 ¹²⁵	Mar 23	\$9.38	✿ \$0.10 ½	+\$0.00 ²⁵	
May 23	\$6.97 ½	↓ \$0.01 ½	-\$0.00 ³⁷⁵	Mar 23	\$14.92 ³ ⁄ ₄	압 \$0.02 3/4	-\$0.01 ⁷⁵	May 23	\$9.41 ³ ⁄4	압 \$0.13 ¾	+\$0.01 ⁸⁷⁵	
July 23	\$6.91 ½	₽ \$0.01	-\$0.03	May 23	\$14.90 ³ ⁄ ₄	압 \$0.02 3/4	-\$0.01	July ^H 23	\$9.23 ³ ⁄ ₄	압 \$0.06	-\$0.09	
Sept 23	\$6.45 ³ ⁄4	↓ \$0.01 ³ ⁄ ₄	-\$0.22 ⁸⁷⁵	July 23	\$14.86	爺 \$0.03	-\$0.02 ³⁷⁵	Sept 23	\$9.26	압 \$0.10 ¾	-\$0.01 ¹²⁵	
Dec ^H 23	\$6.30 ³ / ₄	↓ \$0.01 ½	-\$0.05	Aug 23	\$14.59	No Change	-\$0.27	Dec 23	\$9.24	압 \$0.04 ³ / ₄	-\$0.00 ⁶⁶⁷	
Mar 24	\$6.38 ¹ /4	↓ \$0.00 ³ ⁄ ₄	$+\$0.02^{50}$	Nov ^H 23	\$13.94 ¹ / ₄	û \$0.03 ¹ / ₄	n.a.	Mar 24	\$9.15	압 \$0.03	-\$0.03	

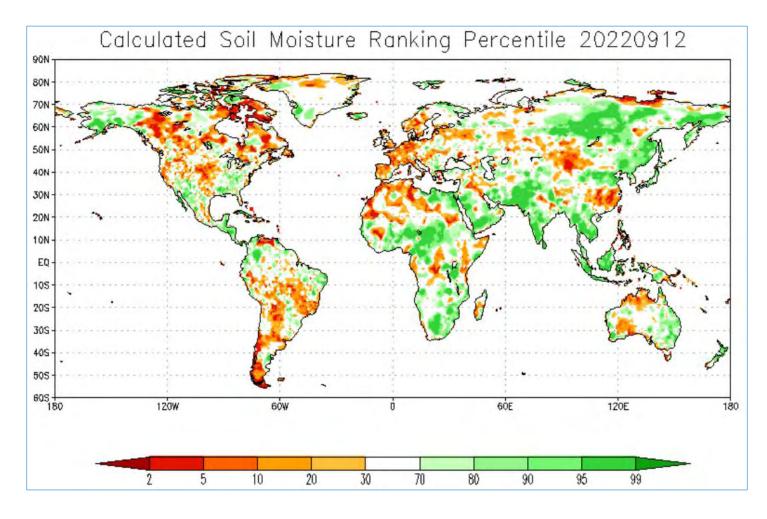
USDA

National Daily Ethanol Report

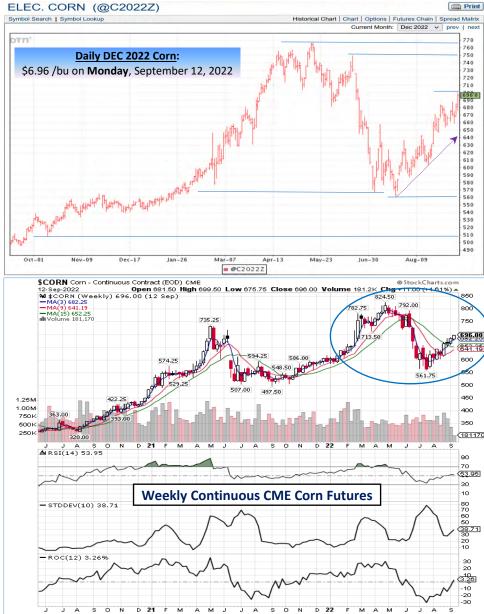

Agricultural Marketing Service Livestock, Poultry, and Grain Market News


September 13, 2022


	US #2 Yellow Corn -Bulk									
Ethanol Plant										
State/Province/Region	Sale Type	Basis (¢/bu)	Basis Change	Price (\$/Bu)	Price Change	Average				
Towa East	Bid	-10.00Z to 90.00Z	UNCH-DN 45	6.8600-7.8600	UP 0.1100-DN 0.3400	7.4000				
Iowa West	Bid	-10.00Z to 115.00Z	UNCH-DN 10	6.8600-8.1100	UP 0.1100-UP 0.0100	7.6935				
Kansas	Bid	45.00Z to 120.00Z	UP 15-UNCH	7.4100-8.1600	UP 0.2600-UP 0.1100	7.7350				
Michigan	Bid	-38.00Z to 15.00Z	UNCH	6.5800-7.1100	UP 0.1100	6.9167				
Minnesota	Bid	-20.00Z to 80.00U		6.7600-7.9225	UP 0.1100-UP 0.1225	7.5392				
Missouri	Bid	5.00Z to 60.00Z	UNCH	7.0100-7.5600	UP 0.1100	7.3075				
Nebraska	Bid	45.00Z to 125.00Z	UNCH	7.4100-8.2100	UP 0.1100	7.6985				


Date						
9/13/2022 (10:00 a.m. CDT)						
Grain Futures Contracts	Closing \$					
DEC 2022 Corn ^(2022 Harvest contract)	\$6.9350					
DEC 2023 Corn ^(2023 Harvest Contract)	\$6.3025					
NOV 2022 Soybeans (Lead Contract)	\$14.9100					
NOV 2023 Soybeans (2023 Harvest Contract)	\$13.9575					
DEC 2022 KC HRW Wheat ^(Lead Contract)	\$9.3825					
JULY 2023 KC HRW Wheat ^(2023 Harvest Contract)	\$9.2525					
9/13/2022 (10:00 a.m. CDT)	Cash Grain &	Harvest Cont	ract Prices @	Kansas Grain	n Elevators	
	Representing the h	iahest bids availat	ole at each locatio	n		
Cash Market Spot & FC Bids	Colby	Salina	Topeka	Barden City	Hutchinson	Columbus Area
	NW KS	NC KS	EC-NE KS	SW KS	SC KS	SE KS
Corn Spot Cash\$	\$7.83	\$7.83	\$7.38	\$8.13	\$7.93	\$7.73
Corn Spot Cash Basis	\$0.90	\$0.90	\$0.45	\$1.20	\$1.00	\$0.80
Corn Harvest FC\$: Fall 2022	\$6.06		\$6.00	\$6.06	\$6.40	\$6.00
Corn Harvest FC\$ Basis	(\$0.24)		(\$0.30)	(\$0.24)	\$0.10	(\$0.30)
Grain Sorghum Spot Cash\$	\$7.33	\$7.18	\$7.03	\$7.28	\$7.19	\$6.53
Sorghum Spot Cash Basis	\$0.40	\$0.25	\$0.10	\$0.35	\$0.26	(\$0.40)
Grain Sorghum Harvest FC\$: Fall 2022	\$5.90		\$5.85	\$5.91		
Sorghum Harvest FC\$ Basis	(\$0.40)		(\$0.45)	(\$0.39)		
Soybean Spot Cash\$	\$14.31	\$14.45	\$14.43	\$13.99	\$15.23	\$15.63
Soybean Spot Cash Basis	(\$0.60)	(\$0.46)	(\$0.48)	(\$0.92)	\$0.32	\$0.72
Soybean Harvest FC\$: Fall 2022	\$13.16		\$13.30			\$13.46
Soybean Harvest FC\$ Basis	(\$0.80)		(\$0.66)			(\$0.50)
KC HRW Wheat Harvest Spot Cash\$	\$8.88	\$9.23	\$9.13	\$9.01	\$8.95	\$8.62
HRW Wheat Harvest Spot Cash Basis	(\$0.50)	(\$0.15)	(\$0.25)	(\$0.37)	(\$0.43)	(\$0.76)
KC HRW Wheat FC\$ - Harvest ²⁰²³	\$8.61	\$8.65	\$9.11	\$8.90	\$8.76	\$8.56
HRW Wheat Harvest FC\$ Basis	(\$0.64)	(\$0.60)	(\$0.14	(\$0.35)	(\$0.49)	(\$0.69)

II. Key U.S. Weather Patterns Affecting U.S. Agriculture


International

- Europe Much-Needed Showers In France, Heavy Rain In The Balkans
 - Much-needed rain eased drought and improved soil moisture for <u>winter crop</u> planting over **France**.
 - Widespread heavy rainfall across the **Balkans** curtailed fieldwork but boosted moisture reserves for winter crop planting and establishment.
 - Dry weather in **England** and **Germany** promoted <u>winter grain</u> and <u>oilseed</u> sowing but kept soils unfavorably dry in the latter.
- Western FSU -Mostly Warm And Dry
 - Mostly dry and warm weather favored <u>summer crop</u> drydown and harvesting in Moldova, Ukraine, and Russia. However, soil moisture remained limited in eastern portions of the region.
- Middle East Seasonably Dry In Turkey, But Some Showers In The Northwest
 - Dry weather over most of **Turkey** favored <u>summer crop</u> drydown and harvesting, though lingering showers in the **northwest** (Marmara) slowed fieldwork locally.
- South Asia Beneficially Drier In Pakistan
 - Drier weather prevailed across Pakistan, easing historic flooding but not before irreversible damage was done to <u>cotton</u> and <u>other crops</u>.
- East Asia Beneficially Cool, Wet Weather In Southern China
 - Showers and cooler weather in portions of southern China eased extreme drought, but likely came too late to improve yield prospects for <u>late-crop rice</u>.
- Southeast Asia Tropical Cyclone Rainfall
 - Typhoon Hinnamnor produced drenching rainfall in the northwestern Philippines, while somewhat drier weather prevailed in northern Thailand and the surrounding areas.
- Australia Conditions Remained Favorable For Winter Crops
 - In the east, widespread showers maintained abundant moisture supplies for reproductive winter grains and <u>oilseeds</u>, but likely interrupted fieldwork in preparation for <u>summer crop</u> planting.
 - o In the south and west, sunny skies promoted wheat, barley, and canola development.
- South America Showers Returned To Southern Brazil
 - o Rain benefited wheat in southern Brazil and neighboring locations in northeastern Argentina.
 - o Cool, dry weather continued for winter grains in central and northwestern Argentina.
- Mexico Beneficial Rain Overspread Northern Mexico
 - o Showers intensified from northwestern watersheds to the Rio Grande Valley.
- Canada Warm, Mostly Dry Weather Supported Prairie Harvesting
 - Prairie spring grain and oilseed harvesting advanced, although the pace lagged the long-term average in many locations.
 - Warm, showery weather benefited immature corn and soybeans in Ontario and Quebec.

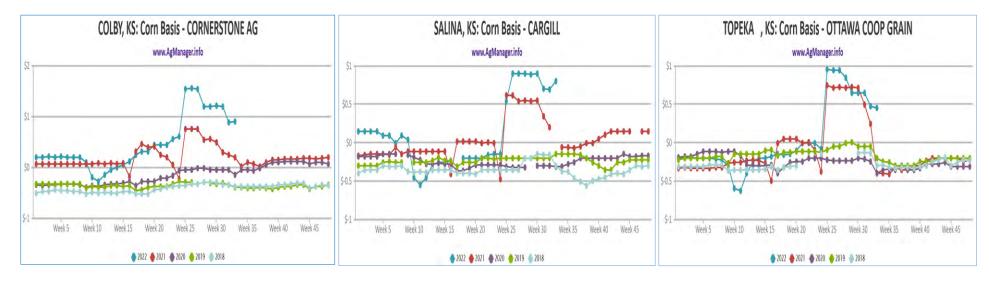
III. Corn & Grain Sorghum Market Information

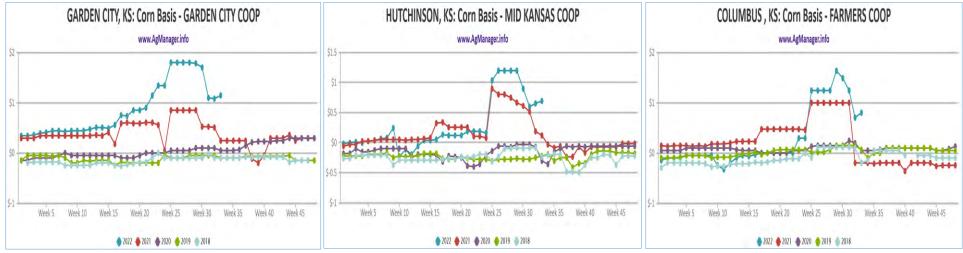
Daily CME DEC 2022 Corn Futures

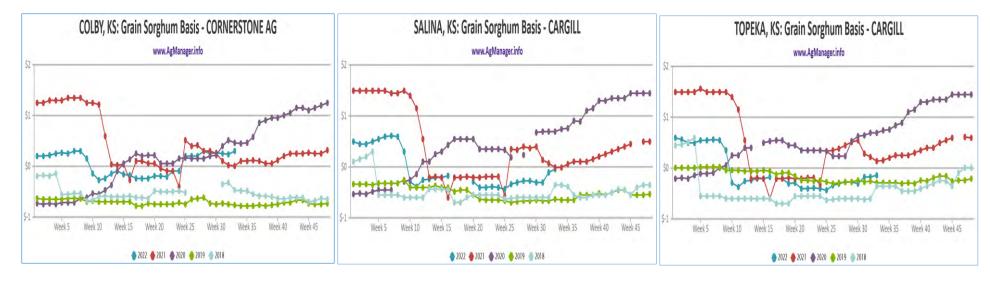
U.S. Corn Exports: "Bearish" short-term corn shipments for "New Crop" MY 2022/23

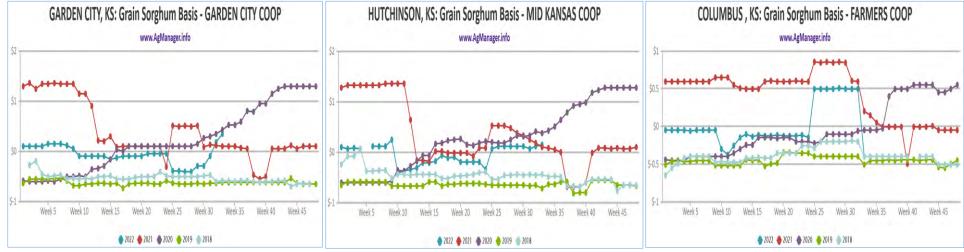
- Export Shipments for week of 9/8/2022^{USDA AMS} for MY 2022/23 = 17.6 mb (Bearlsh) vs 44.3 mb/wk needed to meet USDA's September 12th projn of 2.275 bb exports
- <u>Total shipments through 9/8/2022^{USDA AMS} for "New" MY 2022/23</u> = 22.0 mb i.e., 1.0% of **2.275 bb** USDA projn with 2.20% of MY complete (1.143/52 weeks)

World & U.S. Corn Supply-Demand Fundamentals

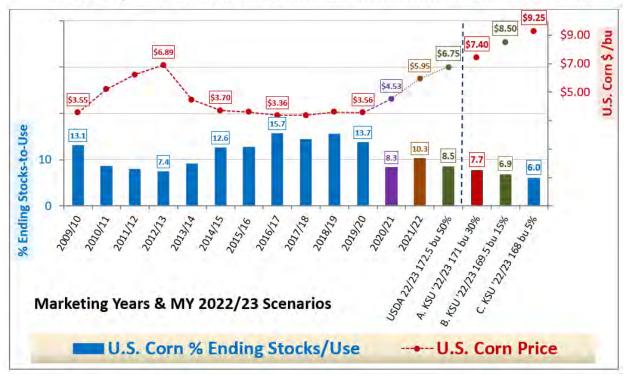

Mktg Yr	World S/U	Wld-China S/U	U.S. % S/U	U.S. \$/bu	U.S. Crop
2017/18	31.2% S/U	14.3% S/U	14.5% S/U	\$3.36 /bu	14.609 bln bu
2018/19	28.1% S/U	12.7% S/U	15.5% S/U	\$3.61 /bu	14.340 bln bu
2019/20	27.0% S/U	12.3% S/U	13.7% S/U	\$3.56 /bu	13.620 bln bu
2020/21 ^{USDA}	25.6% S/U	10.1% S/U	8.3% S/U	\$4.53 /bu	14.111 bln bu
2021/22 ^{USDA}	26.0% S/U	11.2% S/U	10.3% S/U	\$5.95 /bu	15.115 bin bu
2022/23 ^{USDA}	25.8% S/U	11.0% S/U	8.5% S/U	\$6.75 /bu	13.944 bln bu

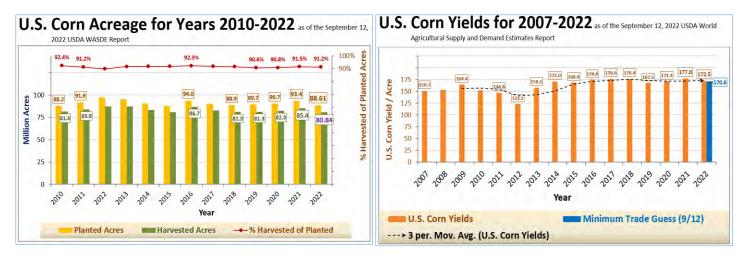

U.S. Grain Sorghum Exports: "Bearish" short-term shipments for "New Crop" MY 2022/23

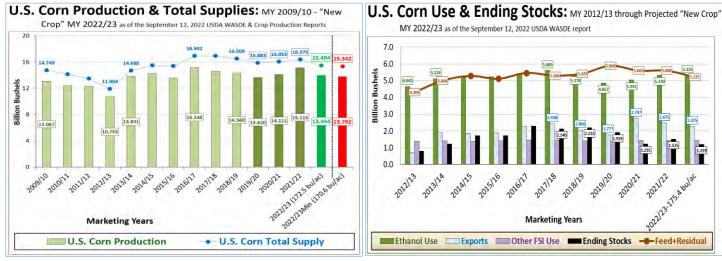

- Weekly Export Shipments week of 9/8/2022^{USDA AMS} for MY 2021/22 = 1.831 mb (Bearish) vs 3.800 mb/wk needed to meet USDA's September 12th projn of **195 mb exports**
- <u>Total shipments through 9/8/2022^{USDA AMS} for "New" MY 2022/23</u> = 1.882 mb i.e., 1.0% of **195 mb** USDA projn with 0.003% of MY complete (0.143/52 weeks)


World Coarse Grain & U.S. Sorghum Supply-Demand Fundamentals

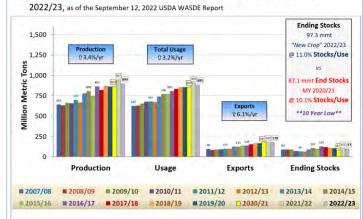
<u>Mktg Yr</u>	World S/U	Wld-China S/U	U.S. % S/U	U.S. \$/bu	U.S. Exports
2019/20	23.5% S/U	12.0% S/U	8.0% S/U	\$3.34 /bu	203 mln bu
2020/21	22.2% S/U	10.1% S/U	5.2% S/U	\$5.04 /bu	279mln bu
2021/22 ^{USDA}	22.7% S/U	10.9% S/U	12.8% S/U	\$5.90 /bu	290 mln bu
2022/23 ^{USDA}	22.4% S/U	10.6% S/U	7.0% S/U	\$6.65 /bu	195 mln bu


U.S. Corn Supply-Demand Balance Sheet: Projected "New Crop" MY 2022/23 as of the


September 12, 2022 USDA WASDE report, with Alternative KSU "New Crop" 2022/23 Marketing Year Scenarios


Item	USDA 2022/23 9/12/2022 WASDE 172.5 bu/ac 13.994 bb crop	A. KSU "New Crop" MY 2022/23 Scenario #1 "Lower Yields" = 171.0 bu/ac 13.824 bb crop	B. KSU "New Crop" MY 2022/23 Scenario #2 "Much Lower Yields" = 169.5 bu/ac 13.703 bb crop	C. KSU "New Crop" MY 2022/23 Scenario #3 "Major Drought Yields" = 168.0 bu/ac 13.582 bb crop			
% Probability of Occurring (KSU)	50% ^{KSUest}	30% ^{KSUest}	15% ^{KSUest}	5% ^{KSUest}			
Planted Area (million acres)	88.608	88.608	88.608	88.608			
Harvested Area (million acres)	80.844	80.844	80.844	80.844			
% Harvested/Planted Area	91.24%	91.24%	91.24%	91.24%			
Yield / harvested acre (bu/ac)	172.5	171.0	169.5	168.0			
	Million Bushels						
Beginning Stocks (million bushels)	1,525	1,525	1,525	1,525			
Production (million bu.)	13,944	13,824	13,703	13,582			
Imports (million bu.)	25.0	25	25	25			
Total Supply (million bu.)	15,494	15,374	15,253	15,135			
Ethanol for fuel Use (million bu.)	5,325	5,325	5,375	5,375			
Food & Industrial Use (mln bu.)	1,419.4	1,419.4	1,419.4	1,419.4			
Seed Use (million bu.)	30.6	30.6	30.6	30.6			
Exports (million bu.)	2,275	2,275	2,275	2,275			
Feed & Residual Use (million bu.)	5,225	5,225	5,225	5,225			
Total Use (million bu.)	14,275	14,275	14,275	14,275			
Ending Stocks (million bu.)	1,219	1,099	978	860			
% Ending Stocks-to-Use	8.54%	7.70%	6.85%	6.02%			
Days of Supply (% S/U x 365 days)	31.2 days	28.1 days	25.0 days	22.0 days			
U.S. Corn Average Farm Price (\$/bushel)	\$6.75 USDA Vs \$7,14 KSU Futures	\$7.40 /bu vs \$7.14 ^{kSU Futures}	\$8.50 /bu vs \$7.14 KSU Futures	\$9.25 /bu vs \$7.14 KSU Futures			

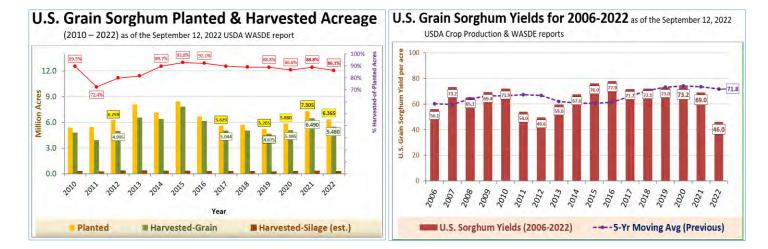
U.S. Corn % End Stocks vs U.S. Corn \$'s: MY 2009/10-

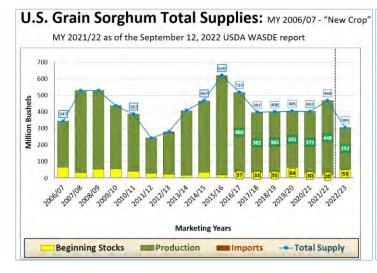

"New Crop" MY 2022/23 as of the September 12, 2022 USDA WASDE report + KSU Scenarios

"World Less-China" Corn Supply-Demand: MY 2007/08 - "New Crop" MY

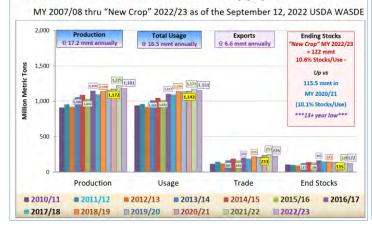
World vs "World^{-Less-China}" % Corn Stocks-to-Use:

Projected U.S. Grain Sorghum Supply-Demand for MY 2022/23


"New Crop" MY 2022/23 as of the September 12, 2022 USDA WASDE report, with Alternative KSU "New Crop" 2021/22 Marketing Year Scenarios


ltere	A. USDA "New Crop" MY 2022/23	B. KSU Adjusted USDA "New Crop" MY 2022/23
Item % Probability of Occurring (KSU)	August 12, 2022 WASDE 65% ^{KSUest}	+ 20 mb ^{Exports} to 215 mb 15% ^{KSUest}
Planted Area (million acres)	6.365	6.365
. ,	5.480	5.480
Harvested Area (million acres)	86.1%	86.1%
% Harvested/Planted Area	46.0	
Yield / harvested acre (bu/ac)	40.0 Million	46.0 Bushels
Beginning Stocks (million bushels)	53	53
Production (million bu.)	252	252
Imports (million bu.)	0.05	0.05
Total Supply (million bu.)	305	305
Food & Industrial Use (mIn bu.)	24.14	24.14
Seed Use (million bu.)	0.86	0.86
Exports (million bu.)	195	215
Feed & Residual Use (million bu.)	65	55
Total Use (million bu.)	285	295
Ending Stocks	20	10
% Ending Stocks-to-Use	7.02%	3.39%
Days of Supply (% S/U x 365 days)	25.6 days	12.4 days
U.S. Grain Sorghum Avg. Farm Price (\$ / bushel)	\$6.65 USDA	\$7.50 кsu

U.S. Sorghum % End Stocks/Use vs U.S. Avg. Cash \$s:


MY 2004/05 - "New Crop" MY 2021/22 as of the August 12, 2022 USDA WASDE

"World Less-China" Coarse Grain Supply-Demand:

 A00

 400

 400

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

 90

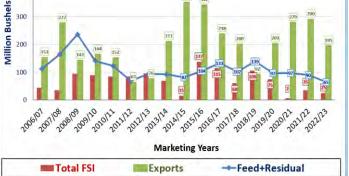
 90

 90

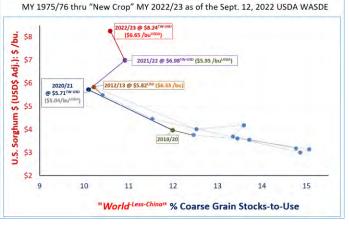
 90

 90

 90


 90

 90


 90

 90

 90
 </

U.S. Sorghum \$'s USD\$ Adj. vs World Coarse Grain^{Less-China} % S/U

\$5 - \$10/acre

Limited Irrigation Corn Management Field Day September 13, 2022 Thomas Co – McIlnay Farms

Resea	rch and Extension						
		No Value		Some Value		Very Valuable	Did attending increase your
Ple	ase rank the value of the topic/session	1	2	3	4	5	knowledge?
	Limited Irrigation Strategies						
	Lucas Haag and Joel Schneekloth						
	Corn Hybrid Discussion						
	seed company reps						
	Time to browse the plot						
How	will a small High Plains corn & sorghum						
р	lot affect regional basis? Dan O'Brien						
. w	as attending this field day a good valu	ue for you	Ir time?	Ye	es	Somewh	at No
. w	hat was the best thing about this field	d day?					
. W	hat was the worst thing about this fie	eld day?					
5. Pl	ease choose what best describes you Producer Consultan		Retail/	Sales _	0t	her	
5. Ho	ow many acres do you operate or con	sult for?					
	0 - 500		001 - 10,0				
	501 - 1,500		,001 - 30,	000			
	1,501 - 2,500 2,501 - 5,000	30	,000 +				
	hat economic value do you believe th rming operation?	e informa	ation obt	ained at t	his field	day will hav	e on your
Id	None \$10 - \$2	o/acre					
	\$1 - \$5/acre \$20+/ac	-					

Grez —

8.	What is the well capacity on the farms that you manage or consult for? Highest gpm/ac Average gpm/ac Lowest gpm/ac
9.	Do you use preseason irrigation? Always Sometimes Never
10.	How did you find out about this meeting? Check all that apply.
	Postcard Flier Email Facebook Twitter
	Other, please specify

11. Any other comments about this field day or suggestions you have for future meetings/field days?

Jhank you for your feedback!