

NW Area Agronomy Research Program

- Conduct applied research relevant to the 29 county territory and the region
- 100% Funded by Industry
 - Contract projects with private firms
 (Valent Biosciences, Deere & Co., Syngenta, etc.)
 - Field Pea Performance Test Entries
 - Cover Your Acres Proceeds
- Industry funds also subsidize my extension activities

Outline

- Wheat
 - Solid-Stem Wheat Varieties
 - In-Furrow Urea
 - Variety x Seeding Rate
 - Durum Wheat Management
- Peas
 - Variety Testing
 - Seeding Rates
 - Winter Peas
- Corn
 - Dryland Hybrid x Seeding Rate
- Challenges, Opportunities, Priorities

2018 Cover Your Acres Conference

Knowledge ^{for}Life

Adaptability of Northern Plains Solid-Stemmed Wheat to Northwest Kansas

Lucas Haag, Assistant Professor and Northwest Area Agronomist K-State Northwest Research-Extension Center, Colby Kansas Ihaag@ksu.edu, (785) 462-6281, Twitter: @LucasAHaag

Jeanne Falk Jones, Multi-County Agronomist, K-State Northwest Research-Extension Center, Colby, Kansas

Alan Schlegel, Professor and Agronomist-in-Charge, K-State Southwest Research-Extension Center, Tribune, Kansas

Knowledge forLife

Wheat Stem Sawfly

- Adults emerge late May or early June
- ¾" long, smokey-brown wings
- Flight period 3-6 weeks
- Females lay 30-50 eggs (one per plant)
- Larvae move down to base of plant, cut stem and pack frass behind them
- Wheat plants then lodge, almost immediately prior to harvest

Figure 1: Adult wheat stem sawfly.

Figure 2: Sawfly larva in stub

Figure 3: Stubs in which wheat stem sawfly larvae overwinter.

Cropping Systems Impact

- Intensified rotations in the Central Great Plains rely on good stubble
- Good news on stubble height and parasitoids
 - One more good reason to adopt stripper head technology
- Control options (other than solid stem) are counter-productive to high plains dryland production = residue destruction

2018 Cover Your Acres Conference

Materials and Methods

- 10 Site-years (Tribune-4, Colby-4, Herndon-2)
- RCBD with 4 replications, plots 5' x 40'
- Seeded at 60 (Tribune) or 90 lb ac⁻¹ (Colby, Herndon)
- Machine harvested for yield
- Biomass and Yield Components
- Heading Date (Tribune)

2018 Cover Your Acres Conference

Knowledg ^{for}Life

Varieties Evaluated Colby Tribune Herndon Colby Tribune Herndon Colby Tribune Colby Tribune Herndon Colby Tribune Local CSU LCS Chro TAM111 Local Local TAM112 TAMU Local TAM114 Tatanka KSU Local Winterhawk West KS14H180-4-6 KSU Local Experimental C015SFD061 CSU C015SFD092 CSU C015SFD095 CSU Local Solid-Stem Experimental Local Solid-Stem Experimental Local Solid-Stem Experimental CO15SFD107 Local Solid-Stem Expe Solid-Stem Bearpaw Solid-Stem Solid-Stem udee MSU Solid-Stem Rampart MSU Solid-Stem MSU/Wyoming MSU WB-4483 Westbred Solid-Stem WB-Quake MTS1588 Solid-Stem Experimental **K-STATE** 2018 Cover Your Acres Conference

Variety	2014 Heading Date	Variety	2015 Heading Date	
	May		May	
TAM112	15.5 a	TAM112	4.5 a	
TAM111	18.8 b	Winterhawk		
Norris	19.3 b	Norris	7.0 b	
Bynum	20.8 c	TAM111	7.5 b	
Denali	21.3 C	Bynum	11.3 c	
Bearpaw	22.3 d	Denali	12.0 c	
Judee	22.5 d	Rampart	14.0 d	
Genou	22.8 d	Judee	14.5 d	
Rampart	23.0 d	Bearpaw	14.5 d	
Warhorse	24.0 e	Genou	16.3 e	
		Warhorse	16.5 e	
		WB-Quake	17.3 e	
† Letters within	a column and an effect rep	resent differences at LSD (0.	05) unless noted	otherwise

Year	Location	Mean Yield of Local Varities	Mean Yield of Solid-Stemmed Varities	%	
2014	Tribune	59.7	39.7	66%	
	Colby	74.3	66.0	89%	
2015	Tribune	60.0	53.4	89%	
	Colby	37.3	36.7	99%	
	Herndon	27.4	24.7	90%	
2016	Tribune	84.3	70.3	83%	
	Colby	85.5	72.6	85%	
	Herndon	73.5	65.6	89%	
2017	Tribune	55.8	31.4	56%	
	Colby	89.6	59.6	67%	
			Max	99%	
			Min	56%	
			Average	81%	

Conclusions

- Solid stemmed wheats from the Northern
 Plains can be consistently grown in Northwest
 Kansas
- A reduction in yield should be expected
- If sawfly advances rapidly, these varieties could be used as a stop-gap until locally adapted varieties become available

2018 Cover Your Acres Conference

In-Furrow Placement of Enhanced Urea Products with Wheat

Lucas Haag, Ph.D., Assistant Professor and Northwest Area Agronomist
Northwest-Research-Extension Center, Colby

Alan Schlegel, Ph.D., Professor and Agronomist-in-Charge Southwest Research-Extension Center, Tribune

Dorivar Ruiz-Diaz, Ph.D., Associate Professor and Soil Fertility Specialist
Department of Agronomy, Manhattan

In-Furrow Urea Materials and Methods

- Western Sites: No-till into chem-fallow, Certified CSU-Byrd, target 1.05 million seeds/ac
- Hunter 2017: No-till into wheat stubble, Certified KSU-Larry
- Treatments (in addition to grower practice):
 - 10, 20, 30, 60 lbs/ac N as ESN, NBPT, or Urea
 - MAP to get 10 lbs/ac N (91 lbs/ac of MAP)
 - Control
- Locations:
 - Tribune, Colby, Herndon, and Hunter (2017)
- Measurements

Fall stand count Spring Vigor

Head Counts Grain Yield and Protein

2018 Cover Your Acres Conference

Conclusions

- Some indication that ESN and NBPT coated urea provides some saftey over untreated urea if used in-furrow
- Not enough site-years yet to truly evaluate the risk of various levels
- Low levels (10 lb/ac) of ESN urea appear to offer minimal risk

2018 Cover Your Acres Conference

Wheat Variety x Seeding Rate Study

Alan Schlegel, Ph.D., Professor and Agronomist-in-Charge Southwest Research-Extension Center, Tribune

John Holman, Ph.D., Associate Professor and Cropping Systems Agronomist Southwest Research-Extension Center, Garden City

Lucas Haag, Ph.D., Assistant Professor and Northwest Area Agronomist

Northwest-Research-Extension Center, Colby

Wheat Variety x Seeding Rate Study

Questions:

- Are current seeding rate recommendations appropriate for current varieties
- 2. Is there a need for variety specific seeding rate recommendations <u>OTHER THAN</u> adjusting for seeds per lb.

2018 Cover Your Acres Conference

Wheat Variety x Seeding Rate Study

- 2014 preliminary study at Garden City and Tribune
 - Garden City hailed out (<10 bu/ac yields)
 - Tribune showed no response to increasing seeding rate from 30 to 75 lb/ac)
- Garden City, Tribune, and Colby
- No-Till into sorghum stalks (W-S-F rotation)

2018 Cover Your Acres Conference

Inowledge forLife

Treatment Structure

- Seeding Rates
 - 2014
 - 30, 45, 60, 75 lb/ac
 - 2015-present
 - 30, 45, 60, 75 and 90 lb/ac
- Seed Size

	Average	Max	Min
TAM111	17627	17627	17627
Byrd	15796	16142	15407
T158	13018	15479	11414
Winterhawk	14731	18421	12850
TAM114	16210	16779	15641

- Varieties
 - TAM113 (2014 only)
 - TAM111 (prior to '17)
 - TAM114 (17-current)
 - Byrd
 - Winterhawk
 - T158

2018 Cover Your Acres Conference

Knowledg forLife

P > F Seeding ety Rate	y Variety x	
	Seeding	
0.0020	0.1761	-
001 <0.0001	0.0458	
001 <0.0001	0.3607	
35 <0.0001	0.9101	
84 0.0095	0.2444	
001 <0.0001	0.0006	
0.2051	0.9986	
001 <0.0001	0.3760	
001 <0.0001	0.7308	
86 <0.0001	0.1901	
001 <0.0001	0.2852	=
11 10/11	2/11	
)(0001 <0.0001	0001 <0.0001 0.2852

Caveats

- 1. Study was conducted on a lbs/acre basis
- Through previous research and experience we know that optimal seeding rate varies by planting date
 - Our optimal seeding rates may be skewed by slightly later planting dates
- 3. While the locations and management were not nutrient limited, they are not super-high fertility either (i.e. no history of manure)

2018 Cover Your Acres Conference

Conclusions Thus Far...

- The data we have collected so far is not supportive of variety specific seeding rates
- There are potential negative consequences to planting less than optimal seeding rates
 - If there is a lack of fall tillering your yield potential has been capped

Durum Wheat Management

- Higher value wheat, typically used for pasta
- KSU Wheat Breeding has been working on developing winter durum wheats for over a decade
- A critical range of protein
- Target production will be on limited irrigation acres

2018 Cover Your Acres Conference

Durum Wheat Management

- Varieties (4)
 - 2 KSU winter durum experimentals
 - Belgum line
 - SY Sunrise
- Planting Dates (4)
 - **-** 9/15, 9/29, 10/13, 10/27
- Seeding Rates (4)
 - -0.9, 1.35, 1.8, and 2.25 million seeds/acre

2018 Cover Your Acres Conference

Procedures

- No-Till into row-crop residue
- Seeded with Great Plains Drill on 10"
- Targeted drop of 365,000 live seed / acre
- Granular inoculant at 1.5x recommended rate
- Plots are 5' x 40'
- 5 Replications
- Machine harvested

2018 Cover Your Acres Conference

	2015	2	016	2	017	
Group rage Entries eld	Top Group Average Yield	Entries	Top Group Average Yield	Entries	Top Group Average Yield	Top Group Across Years
9.2 17	40.9	18	31.4	18	29.7	37.8
3.2 18	30.6	22	33.8	20	39.3	33.0
- 9	47.5	18	31.7	18	-	39.6
	-	14	27.9	18	29.6	28.8
.6 -	-	-	-	-	-	4.6
- 11	55.2	-	-	-	-	55.2
	eld 9.2 17 3.2 18 - 9 6 -	eld Yield 9.2 17 40.9 3.2 18 30.6 - 9 47.5 66	eld Yield 0.2 17 40.9 18 3.2 18 30.6 22 - 9 47.5 18 14 .6	eld Yield Yield 9.2 17 40.9 18 31.4 3.2 18 30.6 22 33.8 - 9 47.5 18 31.7 14 27.9 .66	eld Yield Yield 0.2 17 40.9 18 31.4 18 3.2 18 30.6 22 33.8 20 - 9 47.5 18 31.7 18 14 27.9 18 .66	yeld yield yield yield 9.2 17 40.9 18 31.4 18 29.7 3.2 18 30.6 22 33.8 20 39.3 - 9 47.5 18 31.7 18 - - - - 14 27.9 18 29.6 .6 - - - - - -

Ongoing / Future Work

- Continuing Seeding Rate Studies
- In-Furrow Placement of MAP
- Fungicide Seed Treatments
- Identification of differences in heat stress

tolerance

2018 Cover Your Acres Conference

22

Supported by Industry – Thank You

- Legume Logic
- Pulse USA
- Great Northern Ag
- Kauffman Seed
- Photosyntech
- Meridian Seeds

2018 Cover Your Acres Conference

Winter Peas for Grain

- 8 Varieties
- 3 Planting Dates
 - 10/18; 10/30; and 11/15
- 2 Locations
 - NWREC, planted into summerfallow
 - Rawlins County, planted into fresh corn stalks
- Will evaluate for winter survival and yield

2018 Cover Your Acres Conference

On-Farm Hybrid Characterization

Developing data for VRS implementation

Lucas A. Haag Ph.D.

Assistant Professor / Northwest Area Agronomist K-State Northwest Research-Extension Center, Colby, Kansas

Knowledge ^{for}Life

Hybrids and VRS

- Hybrid characterization is the key to effective VRS strategies
- Our ability to create VRT seeding prescriptions has exceeded our ability to characterize hybrids
 - Rapid hybrid turnover has further complicated this
- Yield components flex differently, at different rates, for different hybrids
- Fewer companies publicizing the "ear flex" scorings of products
 - Definition of ear flex, how much, what
 components

2016 Field Trials

- Fully irrigated trial at NWREC-Colby
 - 3 Hybrids
 - 5 Seeding Rates: 13.1, 22.1, 30.8, 37.8, and 48.6k/ac
 - 4 Replications in RCBD
- Dryland trial on-farm in Decatur County
 - 38 Hybrids
 - 5 Seeding Rates: 8.1, 14.2, 17.2, 20.7, 27k/ac
 - 4 Replications in a SPD
- Yield, Kernel Rows, Kernels per Row, Kernel Wt.

2018 Cover Your Acres Conference

2016-2017 Field Trials

- Dryland trial on-farm in Decatur County
 - 38 Hybrids
 - 5 Seeding Rates:
 - 8,100
 - 14,200
 - 17,200
 - 20,700
 - 27,000/ac
 - 4 Replications in a split-plot design
- Yield, Kernel Rows, Kernels per Row, Kernel Wt.

2018 Cover Your Acres Conference

Historical Probability of Reaching Black Layer Before a 28° F Freeze - Oberlin, 1893-2016 Hybrid Planting Date												
Relative Maturity		17-Apr 24-Apr 1-May 8-May 15-May 22-May 29-May 5-Jun 12-Jun							19-Jun	26-Jun		
118	2815	96.0%	91.4%	88.6%	84.8%	74.3%	65.7%	43.8%	22.9%	12.4%	1.9%	1.0%
113	2768	96.8%	94.3%	89.5%	88.6%	78.1%	70.5%	55.2%	33.3%	16.2%	2.9%	1.0%
110	2670	98.4%	97.1%	95.2%	91.4%	87.6%	76.2%	71.4%	51.4%	24.8%	10.5%	1.9%
108	2604	98.4%	98.1%	97.1%	94.3%	91.4%	86.7%	76.2%	60.0%	38.1%	17.1%	2.9%
105	2520	99.2%	99.0%	98.1%	97.1%	93.3%	91.4%	83.8%	73.3%	53.3%	25.7%	9.5%
103	2463	99.2%	99.0%	99.0%	98.1%	97.1%	93.3%	88.6%	79.0%	63.8%	34.3%	15.2%
96	2357	100.0%	99.0%	99.0%	99.0%	98.1%	98.1%	92.4%	87.6%	78.1%	56.2%	26.7%
91	2250	100.0%	100.0%	100.0%	99.0%	99.0%	98.1%	98.1%	93.3%	87.6%	76.2%	49.5%
Average G	DU	3270	3207	3141	3066	2981	2882	2777	2661	2533	2391	2239
Maximum	GDU	4143	4074	3960	3846	3723	3620	3502	3368	3230	3038	2869
Minimum	GDU	2399	2331	2279	2223	2168	2050	1952	1904	1819	1719	1605
		ww	w.nc	orthv	vest	.ksu	.edu	ı/agr	ono	my		

