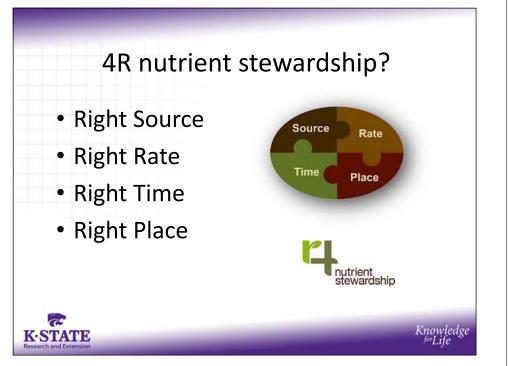


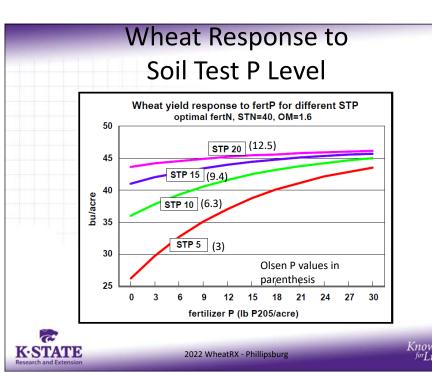
Wheat Fertility Management for Yield and Protein


Lucas Haag, Ph.D., Extension Agronomist K-State Northwest Research-Extension Center, Colby, Kansas K-State Southwest Research-Extension Center, Tribune, Kansas

Grain : Nutrient Price Ratios

	Historical	Jun-22
Corn:Nitrogen	3.42	4.87
Wheat:Nitrogen	2.75	4.51
Corn:Phosphorus	5.05	5.53
Wheat:Phosphorus	4.07	5.12

C

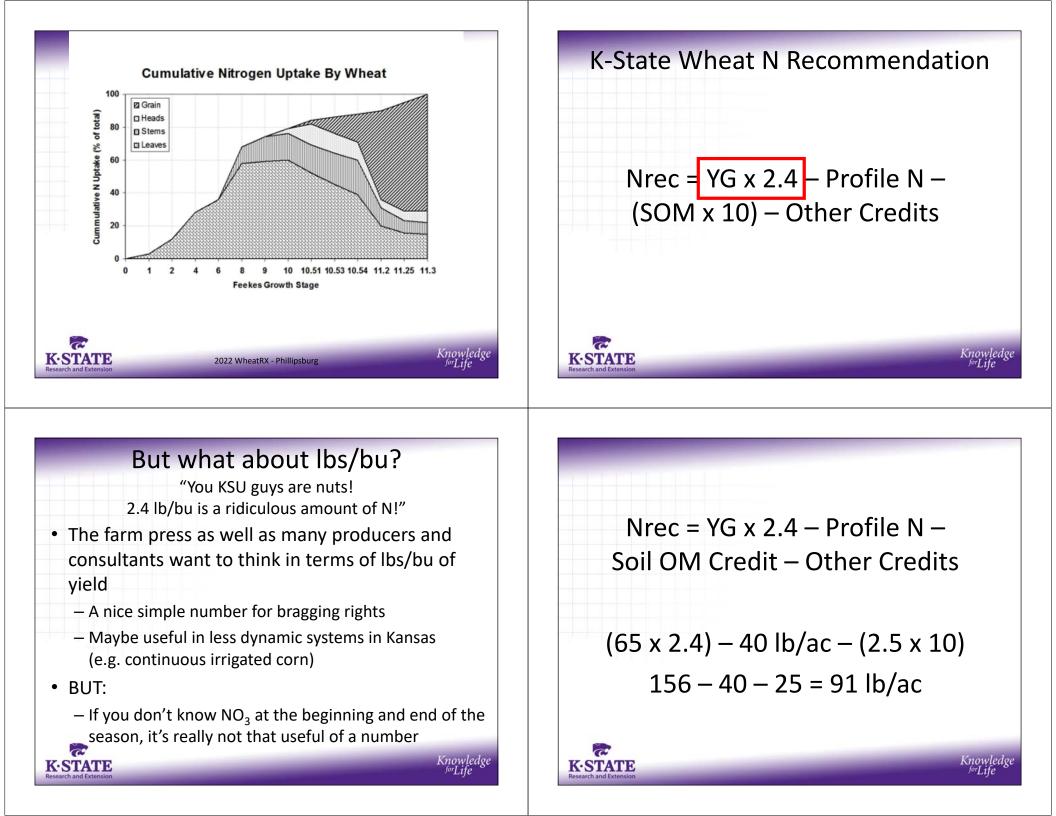

K·STATE

Phosphorus

- We're going to talk mostly about N this morning
- Anything said about maximizing response to N assumes that we have taken care of P
- Are we aware of our removal rates (e.g. increase of soybeans in NCKS rotations)
- Wheat responds to starter P, especially when late planted or low STP soils
- Recent KSU research would suggest threshold STP may be closer to 25 ppm (Bray1/Mehlich3)

Phosphorus removal values

Сгор	Unit	P ₂ O ₅ (lb)
Corn	bushel	0.33
Grain Sorghum	bushel	0.40
Wheat	bushel	0.50
Sunflowers	pound	0.02
Oats	bushel	0.25
Soybeans	bushel	0.80
Dry Beans	cwt	1.32
Proso Millet	cwt	0.69
CTATE STATE cch and Extension		


Lets talk about the mechanistic approach to N recommendations

• The overall idea is to think about peak plant uptake needs, and then work backwards

Nrec = YG x some factor – credits Organic Matter, Profile NO₃, PCA

Common misconception is that it's a removal based system.... NOT TRUE!

Lbs of Nitrogen Removed in Wheat Grain, per Bushel

					Protei	n Cont	ent, %				
Moisture Content	9.00	9.50	10.00	10.50	11.00	11.50	12.00	12.50	13.00	13.50	14.00
10.0	0.83	0.88	0.93	0.97	1.02	1.07	1.11	1.16	1.20	1.25	1.30
10.5	0.83	0.88	0.92	0.97	1.01	1.06	1.11	1.15	1.20	1.24	1.29
11.0	0.82	0.87	0.92	0.96	1.01	1.05	1.10	1.14	1.19	1.24	1.28
11.5	0.82	0.87	0.91	0.96	1.00	1.05	1.09	1.14	1.18	1.23	1.28
12.0	0.82	0.86	0.91	0.95	1.00	1.04	1.09	1.13	1.18	1.22	1.27
12.5	0.81	0.86	0.90	0.95	0.99	1.04	1.08	1.13	1.17	1.22	1.26
13.0	0.81	0.85	0.90	0.94	0.98	1.03	1.07	1.12	1.16	1.21	1.25
13.5	0.80	0.85	0.89	0.93	0.98	1.02	1.07	1.11	1.16	1.20	1.25
14.0	0.80	0.84	0.89	0.93	0.97	1.02	1.06	1.11	1.15	1.19	1.24
14.5	0.79	0.84	0.88	0.92	0.97	1.01	1.06	1.10	1.14	1.19	1.23
15.0	0.79	0.83	0.87	0.92	0.96	1.01	1.05	1.09	1.14	1.18	1.22
Prepared b	oy L. Ha	ag. K-S	tate No	rthwes	t Resea	rch-Ext	ension	Center,	Colby		
STATI	3			2022 W	/heatRX -	Phillipsbu	ırg			K	nowle I ^{or} Life

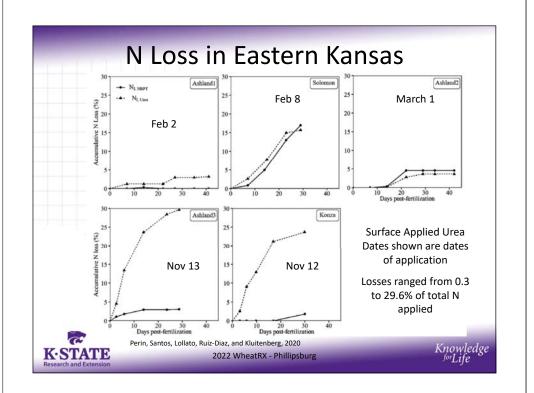
Determining your potential for N loss

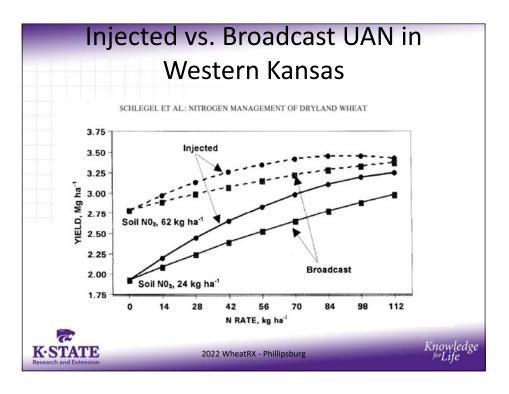
- Identify potential N loss mechanisms
 - Runoff or runaround
 - Leaching
 - Denitrification
 - Volatilization
 - Immobilization

Most mechanisms involve water and are impacted by soil properties and temperature

How can I get the most from my nitrogen?

- Try to estimate how much N you really need. ٠
- Figure out how much N is available in the soil.
- Sort out your potential for N loss and ٠ determine the likely N loss mechanism due to:
 - Local rainfall and climate
 - Soils, especially drainage, texture and pH
 - Management/cropping system
- Assess what tools are available to you.




Nitrogen – management factors

- How do we best utilize our N?
 - Timing as close to utilization as possible
 - Rate determine accurate application rates
 - Placement apply below the soil surface if possible
 - Fertilizer source AA, UAN, Urea
 - Specialty fertilizers ESN
 - Fertilizer additives
 - Agrotain urease inhibitor
 - N-Serve nitrification inhibitor

K-STATE Super U – urease and nitrification inhibitor

Application method of topdress N

0			
U	NA	NA	46
60	Dry urea	Broadcast	51
60	UAN	Sprayed	47
60	UAN	Streamer bars	56
LSD (0.1)			3
	60 60	60 UAN 60 UAN	60 UAN Sprayed 60 UAN Streamer bars

Higher probability of significant profile N

- Medium-fine textured soils
- Recent history of excessive N rates
- Previous crop
 - o Lower than expected yield
 - Drought affected
 - o Previously destroyed stands of alfalfa/clovers
- Manure application
- Warm, late falls and/or early, warm springs

Average soil nitrate levels

Previous crop	Number of samples	Average Profile NO3 Ib/acre
Alfalfa	1	103
Corn	11	65
Fallow	12	154
Sorghum	9	70
Soybean	4	84
Wheat	38	65

Fall sampling before wheat, range: 4-313

From a set of 75 samples. Soil testing lab. K-State, 2008

In-Furrow Placement of Enhanced Urea Products with Wheat

Lucas Haag, Ph.D., Associate Professor and Northwest Area Agronomist Northwest-Research-Extension Center, Colby

Alan Schlegel, Ph.D., Professor and Agronomist-in-Charge Southwest Research-Extension Center, Tribune

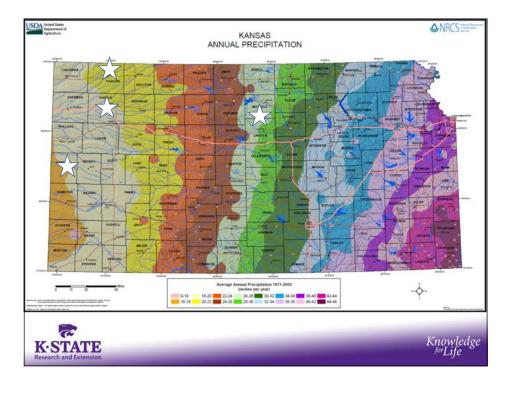
Dorivar Ruiz-Diaz, Ph.D., Professor and Soil Fertility Specialist Department of Agronomy, Manhattan

Other Topdressing Thoughts

- Need to be aware of timing of application.
 Are we getting it on early enough?
- Pricing of UAN vs. Urea has been very tight at times, UAN has ½ the volatilization potential
- Streaming UAN as opposed to broadcast spray will minimize tie-up and reduce volatilization risk

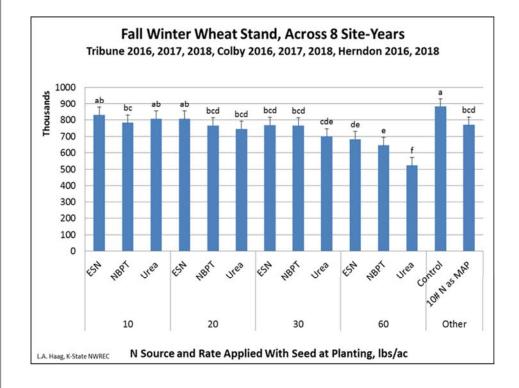
2022 WheatRX - Phillipsburg

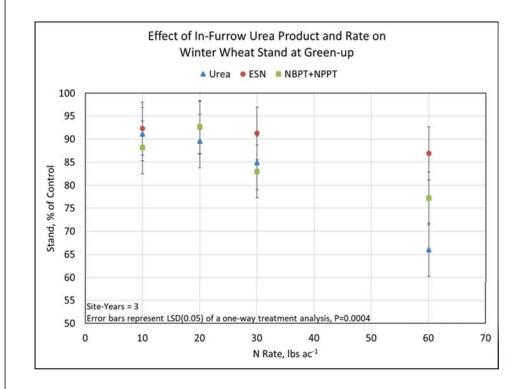
Rationale

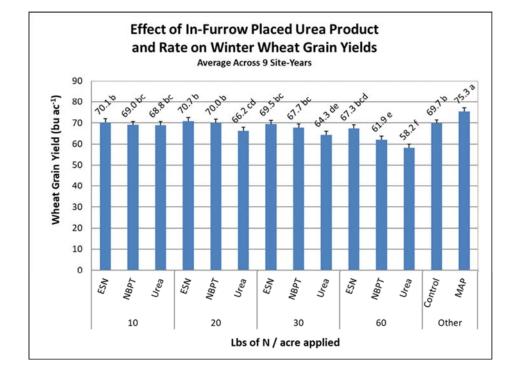

- Current KSU recommendations allow for
- 20 30 lbs ac^{-1} nitrogen with the seed when in
- 7.5 10" spacing
- However we recommend no seed placed urea
- Research in the Northern Great Plains and Prairie Provinces indicates the use of urea and urea products may be possible

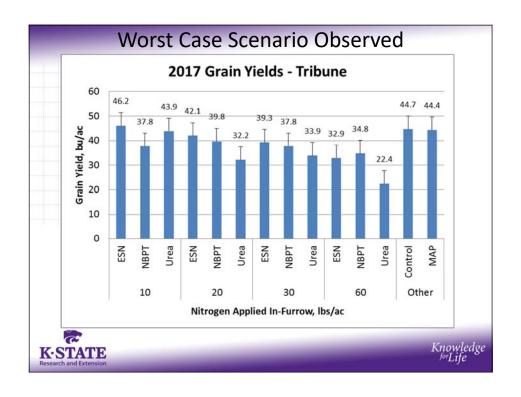
A moment for clarification...

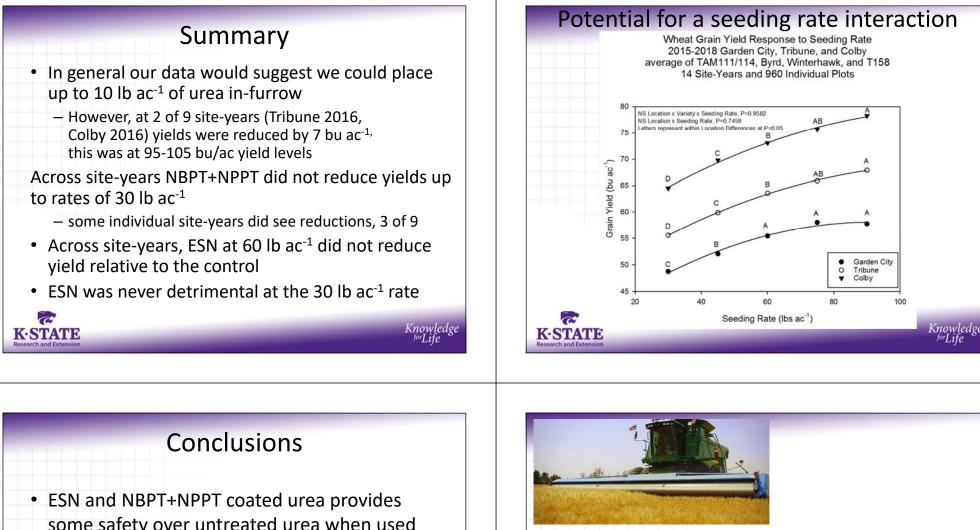
- This study was not designed to evaluate wheat response to N timing, source or placement
- Our objective was to evaluate potential stand reduction and its effect on yield
- A full nitrogen program was performed in-addition to our use of in-furrow urea

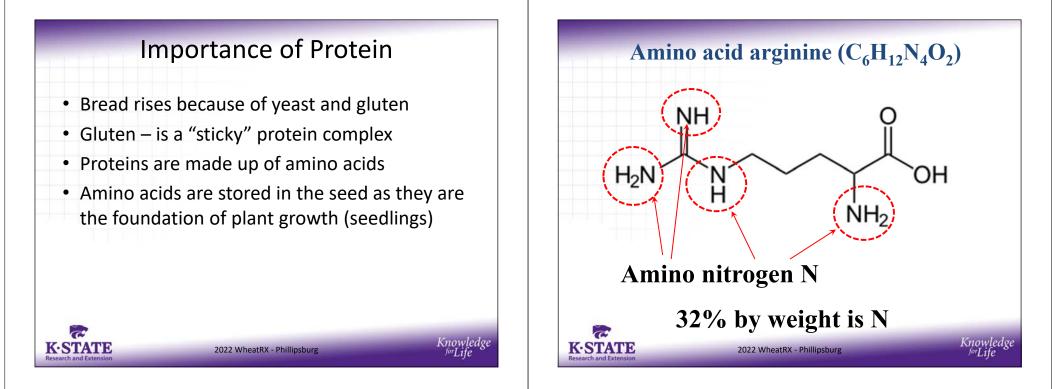

In-Furrow Urea Materials and Methods


- Western Sites: No-till into chem-fallow, Certified CSU-Byrd, target 1.05 million seeds/ac
- Hunter 2017: No-till into wheat stubble, Certified KSU-Larry
- Treatments were in addition to grower practice Factorial (4 rates x 3 products, plus two controls)
 - 10, 20, 30, 60 lbs/ac N as ESN, NBPT+NPPT (Limus), or Urea
 - MAP to get 10 lbs/ac N (91 lbs/ac of MAP)
 - Control (no in-furrow product)
- Row spacing was 7.5" in 2016 and 2017, 10" in 2018






K·STATE

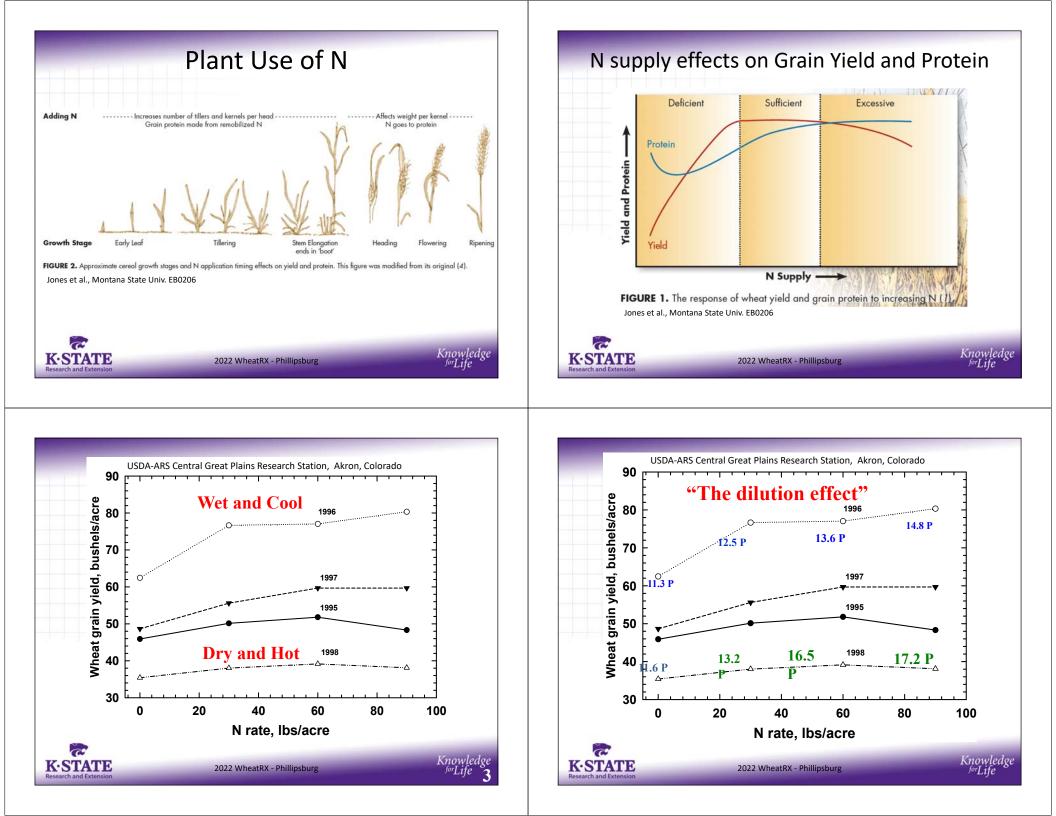

K·STATE

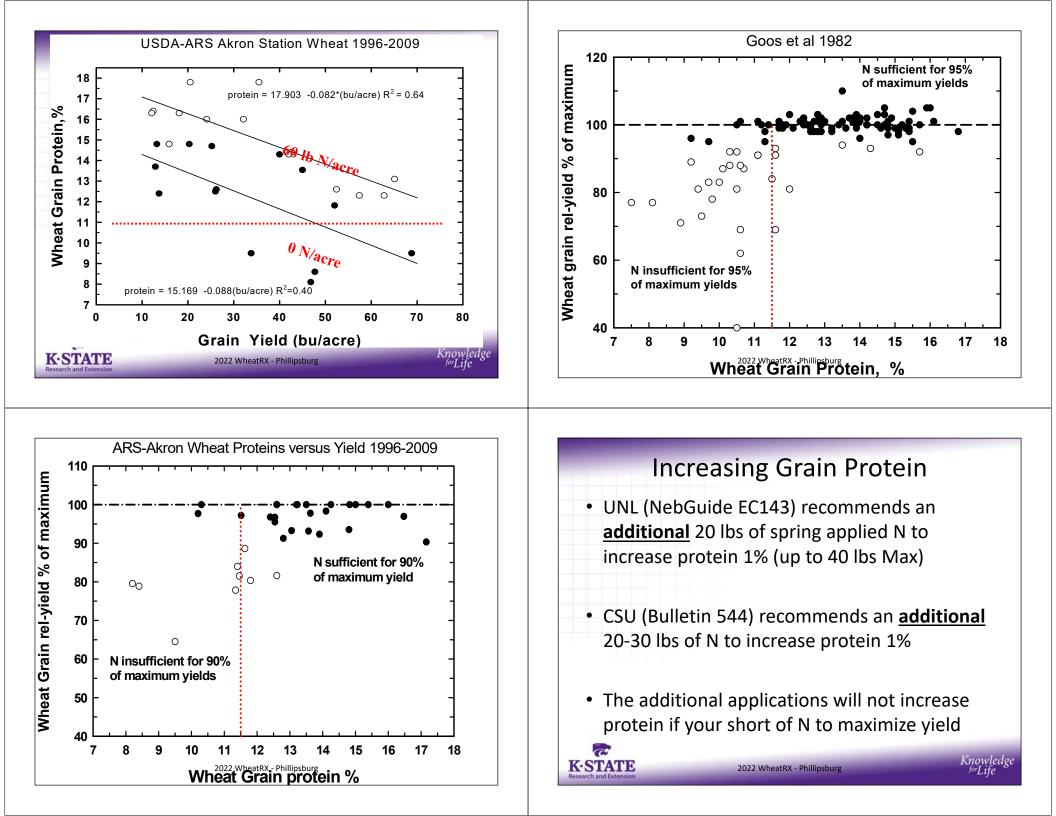
- some safety over untreated urea when used in-furrow in western Kansas
- Not enough site-years yet to truly evaluate the risk of various levels
- Rates of 10, 20, and 30 lb ac⁻¹ for urea, NBPT+NPPT, and ESN appear to be safe in most instances

Wheat Protein

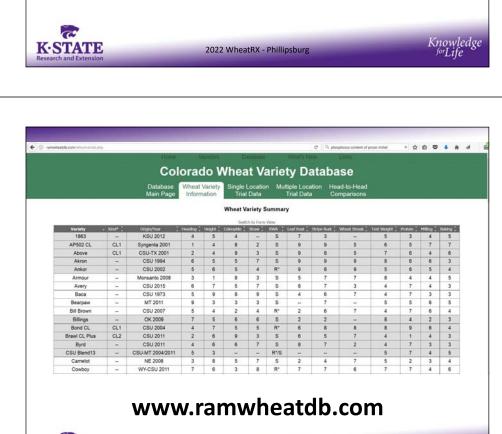
Making Protein

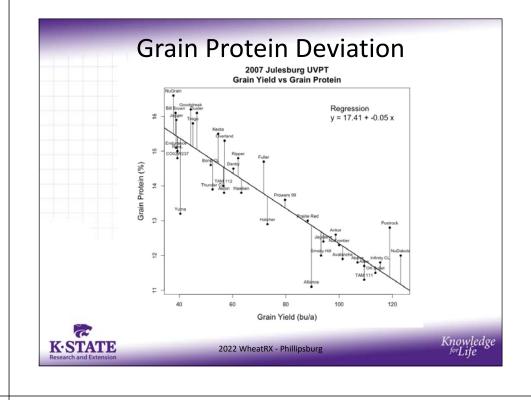
- Nitrogen is a basic component of amino acids
- Amino acids are the building blocks of plant growth and are stored for seedling development
- The protein in the kernel is generally considered to be laid down first before most of the carbohydrates


2022 WheatRX - Phillipsburg


Nitrogen Uptake

- Most of the N used by wheat is taken up before flowering and later moved to the kernel during grain fill
- Photosynthesis occurring during grain fill largely determines kernel starch contents




What Role Does Variety Play?

- Anyone who wants to have a conversation about varieties and protein without talking yield isn't really having a conversation
- Varietal differences have been difficult to identify, takes large datasets
- Work by CSU and others has looked at Grain Protein Deviation as a potential indicator

2022 WheatRX - Phillipsburg

K·STATE

CSU Variety Database Protein Ratings for some varieties

North Central Varieties	Protein Score
Oakley CL	3
SY Wolf	3
Bob Dole	4
KS Dallas	5
T158	5
KS Hamilton	5
SY Monument	5
WB-Grainfield	6
Byrd	7
KS Western Star	7
	in protein content (grain protein de to 9=very low

Knowledge

2022 WheatRX - Phillipsburg

Closing Thoughts on Protein

- Selecting a variety with a good protein score doesn't mean you can get by with less N
- Varieties with a good protein score will still be affected by dilution at high yields
- Protein can be used as a valuable post-hoc evaluation of your N program
 - If protein is consistently less than 11.5% then you are leaving yield on the table!

<section-header><section-header><section-header><image><image><image><image>

Challenges to Protein Management

- Semi-arid environment
 - Highly variable yield potential, remember N has to make yield FIRST
 - Timing of N is key to maximizing protein response
 - Need moisture to move the N
 - Use of slow release N?
- Are you going to get paid for exporting your nitrogen as protein? The opportunities finally seem to be surfacing...

Phone 785-462-6281 Email: LHaag@ksu.edu Twitter: @LucasAHaag Website: www.northwest.ksu.edu/agronomy

