Table of Contents

Session Summaries ... ii

Presenters ... iii

Gateway Conference Center Floor Plan .. v

Economics of Soil Fertility Management ... 1
 Lucas Haag, Northwest Area Agronomist, Northwest Research-Extension Center, Colby, Kansas

Finding Profitability ... 9
 Mark Wood, Extension Ag Economist, Northwest Kansas Farm Management Assoc., Colby, Kansas

Soil Biology and Carbon in Dryland Ag .. 15
 Dan Manter, Research Soil Scientist, USDA-ARS Soil-Plant-Nutrient Research, Ft. Collins, Colorado

Soil pH-Managing the Highs and Lows ... 22
 Dorivar Ruiz Diaz, K-State Extension Soil Fertility Specialists, Manhattan, Kansas

Sorghum and Wheat Insect Issues
 Sarah Zukoff, Entomologist, Southwest Research-Extension Center, Garden City, Kansas
 Sugarcane Aphid Scouting Card .. 26
 Wheat Curl Mite ... 28
 Wheat Stem Sawfly .. 30

Today's Farm Situation vs. the 1980's ... 34
 Gregg Ibendahl, Associate Professor, K-State Dept. of Agricultural Economics, Manhattan, Kansas

UAVs in Crop Production ... 39
 Ignacio Ciampitti, K-State Cropping Systems Specialist, Manhattan, Kansas

Weather and Ag in the Tri-State Region ... 46
 David Floyd, Meteorologist in Charge, National Weather Service, Goodland, Kansas

Weed Control Strategies ... 54
 Curtis Thompson, K-State Extension Weed Specialist, Manhattan, Kansas

Weed Resistance: Today and Tomorrow .. 60
 Phil, Stahlman, Weed Scientist, K-State Agricultural Research Center, Hays, Kansas

Sponsors
 Platinum Sponsors ... 64
 Gold Sponsors ... 68
 Silver Sponsors ... 71
 Breakfast and Refreshment Sponsors .. 73

Conference Notes .. 74

Useful Websites ... 77

Schedule ... Back Cover

To provide a positive experience for presenters and attendees please silence your wireless device.
Session Summaries

Economics of Soil Fertility Management: With thinning margins there are opportunities to use soil testing and precision technologies in your soil fertility management to add to your bottom line.

Finding Profitability: Using NW Kansas data take a look at drivers in profitability and where producers should be looking as margins tighten.

Soil Biology and Carbon in Dryland Ag: Dryland cropping systems are a unique environment when managing as assessing soil biology and soil carbon. Insights from long-term eastern Colorado data will be shared.

Soil pH-Managing the Highs and Lows: High pH has long been an issue in the region, additionally low pH values are becoming more noticeable, especially in long-term no-till. Management strategies for both ends of the pH spectrum will be covered.

Sorghum and Wheat Insect Issues: Take an in-depth look at the management of sugar cane aphid in sorghum and wheat curl mite wheat as well as other pest issues.

Today's Farm Situation vs. the 1980's: Examine the similarities and differences between now and leading into the 1980's farm crisis, and how those aspects should affect your management.

UAVs in Crop Production: UAVs have captured a lot of media attention, take a look at where they might (and might not) fit in crop production.

Weather and Ag in the Tri-State Region: How location specific forecasts, rainfall estimates, and other weather service products developed and their role in agriculture.

Weed Control Strategies: An overview of the latest field trial data for timings, rates, and products to manage troublesome weeds.

Wheat Seed Industry Discussion: The wheat variety development and marketing business is changing at a rapid pace. Representatives from public and private seed programs will discuss their future vision and answer audience questions.

Proceedings from prior years of the Cover Your Acres Winter Conference can be found online: www.northwest.ksu.edu/coveryouracres

K-State Research and Extension is an equal opportunity provider and employer.
Ignacio Ciampitti—Dr. Ciampitti’s program is focusing on assisting agri-business professionals in selecting the best management practices for improving yields under diverse cropping systems scenarios. His research focuses on maximizing yield and closing yield gaps by implementing best management practices, employing review and synthesis analyses procedures, investigating interactions between crop production factors (genotype x environment x management) and using new technologies. On-going projects are: uses of UAVs for detecting production issues and abiotic stresses and development of new tools for rapid screening and predicting yield potential.

David Floyd—David Floyd received his B.S. Degree in Meteorology from the University of Wisconsin in 1974. His weather career in the private sector began as a radio/TV broadcast meteorologist in Wisconsin, then in New York City as an ag/commodity forecaster, and finally in Minneapolis as training manager for a large weather forecasting company (currently DTN/Meteorlogix). In 1994, Dave joined the National Weather Service (NWS) in Norman, OK as a Doppler radar instructor specializing in radar interpretation of severe storms, then later as a forecast meteorologist. In 2002 he moved to the NWS office in Goodland, KS to serve as the Warning Coordination Meteorologist, promoting weather safety/awareness with schools, emergency managers, DOT and local media. Dave is now the Meteorologist-In-Charge at the NWS office in Goodland.

Lucas Haag—Lucas Haag was raised on a diversified dryland farming and ranching operation near Lebanon, Nebraska along the Kansas/Nebraska line. He received his B.S. in Agricultural Technology Management in 2005 and a M.S. in Agronomy (crop eco-physiology) in 2008 from K-State. Lucas served as assistant scientist at K-State's Southwest Research-Extension Center at Tribune, Kansas for 3 years and completed his Ph.D. in Agronomy in 2013. He is an assistant professor of agronomy and Northwest Area Agronomist stationed at the Northwest Research-Extension Center, Colby, Kansas. He has extension agronomy responsibilities for 26 counties in northwest and north-central Kansas. He conducts research and extension activities in a variety of areas but specializes in precision ag and dryland cropping systems. Lucas remains actively tied to production ag as a partner with his brothers in Haag Land and Cattle Co.

Greg Ibendahl—Gregory Ibendahl is an Associate Extension Professor in Agricultural Economics at Kansas State University. His specialty areas are farm management and agricultural finance. Dr. Ibendahl grew up on a grain and beef farm in Southern Illinois and worked for six years in private industry before returning to graduate school at the University of Illinois. He worked experience includes Mobay Chemical and Dekalb Genetics (now part of Monsanto). His Dekalb experience included time working for both the swine division and also the quality assurance seed lab. Dr. Ibendahl has held Extension appointments in Farm Management at the University of Kentucky, Mississippi State University, and now Kansas State University.

Daniel Manter—Dan earned his PhD in Forest Science at Oregon State University in 2001 working on the physiological impacts of Swiss needle cast on Douglas-fir. Dan is currently a Research Soil Scientist with the Soil Management and Sugar Beet Research Unit of the USDA Agricultural Research Service in Fort Collins, Colorado. His research focuses on soil biology and plant-microbial interactions aimed at optimizing soil health, defining microbial community structure and function, and disease suppression. Research emphasis is also on developing new management strategies and novel assessment approaches and techniques to promote and maintain soil health and productivity using rapidly developing genetic techniques.
Dorivar Ruiz-Diaz—Dr. Dorivar Ruiz Diaz is a soil fertility and nutrient management specialist at Kansas State University. He holds a Ph.D. in soil fertility from Iowa State University and MS in soil fertility from the University of Illinois at Urbana-Champaign. He does research and extension work on the efficient use of fertilizers, phosphorus and micronutrient management, and land application of by-products with an emphasis on crop-available nitrogen.

Phil Stahlman—Phil was raised on his family’s small grains and dairy farm in northwest Oklahoma. He received his B.S. in Agronomy from Panhandle State College, M.S. at NDSU, and Ph.D. and Univ. of Wyoming. He is a Professor and Weed Scientist at the K-State Agricultural Research Center-Hays where he has directed weed management research in dryland cropping systems for the past 39 years. Previously he was Agronomist-in-Charge of the Harvey County Experiment Field in Hesston and Assistant Agronomist at the North Central Branch Experiment Station at Minot, ND. His research focuses on crop weed interactions and integrated weed management with recent emphasis on herbicide-induced weed spectrum shifts and the ecology and management of glyphosate resistant kochia.

Curtis Thompson—Curtis Thompson is a Professor and Extension Weed Science Specialist for Kansas State University, Agronomy. Native of North Dakota, he received his BS and MS and NDSU and a Ph.D. at the University of Idaho. His area of focus includes weed management in field crops emphasizing sorghum, corn, sunflower, and resistant weed management. Thompson continues to focus on glyphosate resistant kochia management in western Kansas and has worked extensively on HPPD resistant Palmer amaranth in the central part of the State. Efforts to manage glyphosate resistant Palmer amaranth are intensifying.

Mark Wood—Mark Wood is an Extension Agricultural Economist with the Farm Management Association in Northwest Kansas. He has been assisting Association member families with record keeping, analysis, management and generational transfer issues in Northwest Kansas for over 28 years. He graduated from North Dakota State University with a Master’s degree in Agriculture Economics in 1986 and Kansas State University with a Bachelor’s degree in Agricultural Economics in 1982. Mark grew up on a farm near Wakefield, Kansas.

Sarah Zukoff—Sarah N. Zukoff is a field crop entomologist who has a dual role in research and extension. She specializes in integrated pest management of key pests of corn, sorghum, wheat, alfalfa and cotton. Her extension efforts focus on providing farmers with sustainable, environmentally sound insect and mite pest management strategies to provide the highest yielding crops possible to feed an ever growing population. Her current research includes characterizing resistance levels among corn feeding pests to Bt toxins and insecticides as well as quantifying the effect of Bt toxin cross pollination on resistance development among major lepidopteran pests of corn.
#1 Morgan Drive, Oberlin, Kansas 67749
Phone 785.475.2400 FAX 785.475.2925
Current Situation

Crop nutrient recommendations over the years have generally not included crop and fertilizer price as explicit inputs into the decision. Relatively stable relationships of the price ratio of grain to plant nutrients have not necessitated a need until recent years. Grain: Nutrient price ratios for Nitrogen and Phosphorus on a monthly time step since December, 1985 are presented in Figures 1 and 2 for corn and wheat, respectively. The most notable feature in both figures is the grain: phosphorus ratio during the time period of March through September of 2008 when DAP at the Gulf of Mexico was trading near or above $1,000/ton.

Figure 1. Corn: Nutrient price ratios for nitrogen and phosphorus, December 1985-November 2015.

Today, we are seeing grain: phosphorus price ratios for both wheat and corn that are near the high end of the range since 1985 (excluding the 2008 event). The average wheat: phosphorus ratio since
December of 1985 has been 3.89, while in November of 2015 that ratio was 5.83. The average corn:phosphorus ratio has been 4.97, while in November of 2015 that ratio was 6.18. The grain to nitrogen ratio for corn and wheat are modestly above their long-term averages with corn at 3.81 compared to an average of 3.28 and wheat at 3.60, compared to a long-term average of 2.56.

Certainly in addition to the current grain:nutrient price ratios, declining commodity prices combined with other relatively constant production expenses are pressuring producer margins for the 2016 crop year. In this scenario, farmers cannot afford to use nutrients inefficiently. Determining appropriate application rates and selecting application methods that minimize loss and maximize effectiveness is essential.

Fertilizer Costs as a Component of Farm Profitability

In analysis of Kansas Farm Management Association records from 2002 through 2013 (Crosby et al., 2007; Dhuyvetter and Smith, 2010; Dhuyvetter and Ward, 2014) fertilizer expenses have averaged around 17% of a producers total costs (Table 1). Interestingly, the percentage of a producers total costs attributed to fertilizer is not markedly different for producers in the top, middle, or bottom third of profitability (data not shown). While the percentage of total cost is relatively constant, in terms of dollars/ac there have been some notable differences between producers across the profitability categories. Across the crops and years, producers in the top 1/3 of profitability have spent from...
26.14/acre less to $12.89/acre more on fertilizer expenses than producers in the bottom 1/3 of profitability.

Table 1. Fertilizer expense by profit category, and differences in fertilizer cost, net returns, and yields for KFMA producers 2002-2013.

Non-Irrigated Corn

<table>
<thead>
<tr>
<th>KFMA Years</th>
<th>Fertilizer Expense by Profit Category</th>
<th>Difference between High and Low 1/3</th>
<th>Difference in Net Returns</th>
<th>Fertilizer % of NR Difference</th>
<th>Difference in Yields %</th>
</tr>
</thead>
<tbody>
<tr>
<td>High 1/3</td>
<td>Mid 1/3</td>
<td>Low 1/3</td>
<td>Fertilizer Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-2006</td>
<td>$32.34</td>
<td>$34.35</td>
<td>$48.11</td>
<td>$91.13</td>
<td>17% 7%</td>
</tr>
<tr>
<td>2007-2009</td>
<td>$60.06</td>
<td>$57.47</td>
<td>$67.48</td>
<td>$140.72</td>
<td>5% 17%</td>
</tr>
<tr>
<td>2011-2013</td>
<td>$85.95</td>
<td>$91.43</td>
<td>$88.64</td>
<td>$149.62</td>
<td>2% 54%</td>
</tr>
</tbody>
</table>

Irrigated Corn

<table>
<thead>
<tr>
<th>KFMA Years</th>
<th>Fertilizer Expense by Profit Category</th>
<th>Difference between High and Low 1/3</th>
<th>Difference in Net Returns</th>
<th>Fertilizer % of NR Difference</th>
<th>Difference in Yields %</th>
</tr>
</thead>
<tbody>
<tr>
<td>High 1/3</td>
<td>Mid 1/3</td>
<td>Low 1/3</td>
<td>Fertilizer Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-2006</td>
<td>$41.45</td>
<td>$39.13</td>
<td>$58.03</td>
<td>$138.74</td>
<td>12% 9%</td>
</tr>
<tr>
<td>2007-2009</td>
<td>$82.37</td>
<td>$87.89</td>
<td>$108.51</td>
<td>$256.98</td>
<td>10% 9%</td>
</tr>
<tr>
<td>2011-2013</td>
<td>$138.51</td>
<td>$124.26</td>
<td>$125.62</td>
<td>$334.73</td>
<td>4% 59%</td>
</tr>
</tbody>
</table>

Non-Irrigated Sorghum

<table>
<thead>
<tr>
<th>KFMA Years</th>
<th>Fertilizer Expense by Profit Category</th>
<th>Difference between High and Low 1/3</th>
<th>Difference in Net Returns</th>
<th>Fertilizer % of NR Difference</th>
<th>Difference in Yields %</th>
</tr>
</thead>
<tbody>
<tr>
<td>High 1/3</td>
<td>Mid 1/3</td>
<td>Low 1/3</td>
<td>Fertilizer Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-2006</td>
<td>$25.60</td>
<td>$25.48</td>
<td>$31.44</td>
<td>$81.38</td>
<td>7% 24%</td>
</tr>
<tr>
<td>2007-2009</td>
<td>$40.94</td>
<td>$49.38</td>
<td>$44.76</td>
<td>$126.60</td>
<td>3% 29%</td>
</tr>
<tr>
<td>2011-2013</td>
<td>$73.79</td>
<td>$58.86</td>
<td>$64.82</td>
<td>$134.30</td>
<td>7% 37%</td>
</tr>
</tbody>
</table>

Wheat

<table>
<thead>
<tr>
<th>KFMA Years</th>
<th>Fertilizer Expense by Profit Category</th>
<th>Difference between High and Low 1/3</th>
<th>Difference in Net Returns</th>
<th>Fertilizer % of NR Difference</th>
<th>Difference in Yields %</th>
</tr>
</thead>
<tbody>
<tr>
<td>High 1/3</td>
<td>Mid 1/3</td>
<td>Low 1/3</td>
<td>Fertilizer Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002-2006</td>
<td>$22.09</td>
<td>$19.38</td>
<td>$25.02</td>
<td>$65.39</td>
<td>4% 11%</td>
</tr>
<tr>
<td>2007-2009</td>
<td>$36.35</td>
<td>$46.88</td>
<td>$51.67</td>
<td>$125.28</td>
<td>12% 21%</td>
</tr>
<tr>
<td>2011-2013</td>
<td>$54.97</td>
<td>$63.73</td>
<td>$51.45</td>
<td>$116.24</td>
<td>3% 32%</td>
</tr>
</tbody>
</table>

In general, high profit producers tend to spend less per acre on fertilizer while raising higher crop yields. There are several potential sources of this effect. Differences in fertilizer purchase price as well as management choices of product, rate, and placement all have the opportunity to affect costs and/or
yield. On average, the difference in fertilizer costs as a percentage of the difference in net returns between high and low profit producers is between 6 and 9% across the four crop enterprises shown in Table 1.

Understanding Crop Response

Crop yield response to the addition of fertilizer is determined in large part by the previously existing soil nutrient supply. Murrell and Bruulsema (Figure 3) show the response to fertilizer additions for A) low, B) medium, and C) high soil test levels of a given nutrient (could be N, P, K, S, etc.). At low soil test levels, panel A, one would expect low yields without additional fertilizer. Note that under low soil test conditions, the range of economically optimal rates is relatively narrow, i.e. the optimum rate is minimally affected by grain:nutrient price ratio. Under medium soil test levels, panel B, the expected yield without fertilizer is higher than in low soil test conditions and the range of potentially optimal fertilizer rates is wider. In other words, on medium soil testing soils, in a single-year decision framework, the optimal rate is much more sensitive to grain:nutrient price ratios. As the price ratio increases, the optimal rate declines to the lower end of the range, as the price ratio decreases, the optimal rate increases to the upper end of the range. Under high soil test conditions, where nutrient levels in the soil are sufficient for maximum attainable yields, we would not expect to see a response to added fertilizer as shown in panel C.

Economics of Soil Testing

Higher price ratios increase the potential profits from soil testing at the field or subfield level. In the absence of soil test information some assumption must be made on the nutrient status of the soil. For example, in K-State’s nitrogen recommendations, if a producer doesn’t know the nitrate nitrogen in the 24” profile, a default value of 30 lbs/ac is assumed. Many producers likely apply the “usual” fertilizer rates from a combination of occasional soil tests and experience. Kastens and Dhuyvetter (2005) used data collected in Northwest Kansas to develop a simulation of 10,000 fields in a typical wheat-corn-fallow rotation. A portion of that analysis was to evaluate the change in profit as actual soil test nitrate and soil test phosphorus varied in comparison to an assumed value. Updating this analysis with current prices produces Figures 4 and 5. As shown in Figure 4, as actual soil test nitrate drops below the assumed value of 40 lb/ac, profits in wheat and corn are reduced by approximately $1.00/ac when there is actually 20 lb/ac in the profile and $5.00/ac when there is essentially no nitrate in the profile. These reductions in profit would be attributed to nitrogen deficiency induced yield reductions. As soil test nitrate values exceed the 40 lb/ac assumption, again, profits are reduced due to the cost of applying unneeded nitrogen.
Figure 4. Change in profit if true soil test nitrate (STN) varies from expected STN in a NW Kansas W-C-F rotation.

Figure 5. Change in profit if true soil test phosphorus (STP) varies from expected STP in a NW Kansas W-C-F rotation.
The value of soil sample information is shown to be of greater economic value when pertaining to soil test phosphorus (Figure 5). As actual soil test level drops below the assumed value of 16 ppm Bray1P or Mehlich III, profit for wheat and corn is reduced in excess of $10.00/ac due to phosphorus deficiency induced yield reductions. Conversely, as actual soil test levels rise above the assumed value of 16 ppm, profits are reduced due to the cost of unneeded phosphorus application. The above scenarios give some indication on the potential profitability of soil sampling to identify fields and areas within fields that are both greater than and less than the soil test value for N and P that might otherwise be assumed for making nutrient recommendations.

Soil Testing Data Quality

Investing in a soil testing program requires expense in the forms of sampling equipment, sampling labor, and laboratory fees. The largest challenges to obtaining high quality soil testing data are within the process of physically obtaining the soil sample in the field. Maintaining a consistent and appropriate sampling depth is critical to obtaining a lab result that is consistent with its intended use in nutrient recommendations, i.e. if the recommendations are based off a 6” sample, it’s important to have a lab result representative of cores taken to a depth of 6”. In long-term no-till this becomes especially important as nutrient stratification, especially with respect to phosphorus and soil pH, creates a strong gradient across the shallow depths of the soil profile. In a highly stratified field, collecting a soil core that is 1” short or 1” long can affect lab results and nutrient recommendations. The second main consideration is obtaining a sample consisting of an adequate number of cores to minimize the variability induced by small scale spatial variability in the field. The more cores used to comprise a sample the less influence any one core has on the overall mean. This is important to counteract the effects of small scale spatial variability both from natural soil processes as well as manmade variability, such as that created by banding fertilizer or grazing livestock. Previous work in phosphorus sampling has shown that a minimum of 15 cores is a reasonable number to minimize sample error without dramatically affecting labor requirements (Figure 6). The marginal costs of collecting 15 cores vs. 10 appears to be relatively minor for the increase in data quality.

![Figure 6. Confidence interval around a lab result for STP as a function of cores comprising the sample.](image-url)
Products and Placement

Under the current economic conditions it’s important that producers compare all available forms of plant nutrients on a pound for pound basis. Liquid and dry forms of plant nutrients are equivalent as long as their application method accuracies and efficiencies are comparable. There can be a tendency to consider nutrient products advertised as having “enhanced efficiency” or “plant availability” whereby the producer can cut back on rates of actual nutrient applied due to these characteristics. Producers should always do the math on the nutrient analysis and weight/acre application rate of the product to compare the product on a pound for pound basis. Ortho vs. polyphosphate fertilizers are often a topic of discussion in this regard. While most orthophosphate fertilizers allow higher concentrations to be placed near the seed due to their lower salt concentration, there is effectively no difference in plant availability as polyphosphates convert to orthophosphates (the form absorbed by plants) within a matter of days depending upon soil moisture and temperature conditions.

In the situation where a producer has land relatively low in a given nutrient and has financial or other limitations in applying the full recommendation of that nutrient, placement by banding can improve the relative effectiveness of that applied nutrient. Figure 7, adapted from Anghinoni and Barber, 1980, is a conceptual representation of yield response for high rate of applied nutrient over a large portion of the soil volume compared to a low rate of applied nutrient.

![Figure 7. Conceptual model of nutrient rate and placement in the soil volume on crop yield (adapted from Anghinoni and Barber, 1980).](image)

When the low rate of applied nutrient is contained within a relatively smaller soil volume, a higher yield response will typically be observed. In the Great Plains, this would be particularly true with phosphorus applications. The response to in-furrow applications of phosphorus is common in soils at less than
sufficiency soil test levels (<20 ppm Bray 1P or Mehlich III). The probability of seeing a response to banded phosphorus increases as soil test phosphorus decreases. Manure is very valuable plant nutrient resource that should be considered for economic evaluation as well and used if possible.

Summary:

It’s important to remember that higher grain:nutrient price ratios do not change the amount of N or P removed by a crop from the soil. Higher price ratios however, do increase the potential profitability of implementing a soil sampling program for determining optimum fertility rates, provided that the sampling program collects data of good quality. Producers should keep in mind that fertilizer applications that are less than crop removal will result in mining of soil reserves, regardless of product and application method. In medium and high testing soils, reduced rates are a potential remedy to narrow margins in the short term, but producers should keep in mind the long-term consequences. In low testing soils, the application of necessary crop nutrients is economically preferable to reducing nutrient application and in some cases placement can be used to improve crop response when less than recommended rates are to be applied.

Acknowledgements:

The author extends his thanks to Terry Kastens and Kevin Dhuyvetter, emeritus and former faculty, respectively, in the KSU Department of Agricultural Economics for sharing their data and prior work on soil testing economics.

References:

The following are examples of charts and tables that are the basis for my presentation at the 2016 Cover Your Acres conference in Oberlin, KS. I’ll begin with a review of the average financial performance of the Kansas Farm Management Association, Northwest membership from 2004 through an estimate of 2015. The value of history can be the benefit of perspective. The 2007 through 2012 analysis years demonstrate income and equity accumulation beyond historic proportions. The recent and projected declines simply return producers to a longer term income and financial situation. Unfortunately, the excessive income will have to be “worked out” of the system like all business cycles. Who will find success in times like these? Who will simply hold on until better times return? These questions and more will be discussed in this presentation.

I look forward to visiting with many of you at the Cover Your Acres Conference. Let’s keep our chin up and forge ahead. That’s what successful people do.....

Mark A. Wood
2014 Data - Northwest Kansas

Kansas Farm Management Association

Enterprise Summary

NON-IRRIGATED NO-TILL GRAIN SORGHUM

<table>
<thead>
<tr>
<th>PROFIT CATEGORY (per Acre)</th>
<th>High 1/3</th>
<th>Mid 1/3</th>
<th>Low 1/3</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Acres</td>
<td>496</td>
<td>724</td>
<td>432</td>
<td>60</td>
</tr>
<tr>
<td>Acres Owned</td>
<td>144</td>
<td>167</td>
<td>166</td>
<td>-22</td>
</tr>
<tr>
<td>Acres Rented</td>
<td>341</td>
<td>267</td>
<td>267</td>
<td>0</td>
</tr>
<tr>
<td>Yield/Acre</td>
<td>83.29</td>
<td>78.19</td>
<td>49.61</td>
<td>33.68</td>
</tr>
<tr>
<td>Operator Percentage</td>
<td>84.37%</td>
<td>85.46%</td>
<td>87.02%</td>
<td>-2.65%</td>
</tr>
<tr>
<td>Price/Bushel</td>
<td>$3.92</td>
<td>$4.05</td>
<td>$3.85</td>
<td>$0.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INCOME</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain Sorghum (Oper Shr)</td>
<td>271.31</td>
<td>270.53</td>
<td>167.13</td>
<td>104.18</td>
</tr>
<tr>
<td>Government Payments</td>
<td>0.92</td>
<td>0.00</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>Crop Insurance Proceeds</td>
<td>24.63</td>
<td>17.73</td>
<td>25.45</td>
<td>-7.93</td>
</tr>
<tr>
<td>Other Income</td>
<td>1.59</td>
<td>2.02</td>
<td>4.03</td>
<td>-2.44</td>
</tr>
</tbody>
</table>

GROSS INCOME

- $290.45
- $278.28
- $196.61
- $101.84

Kansas Farm Management Association

Annual ProfitLink Summary

NON-IRRIGATED NO-TILL CORN

<table>
<thead>
<tr>
<th>PROFIT CATEGORY (per Acre)</th>
<th>High 1/3</th>
<th>Mid 1/3</th>
<th>Low 1/3</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Acres</td>
<td>59</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Acres Owned</td>
<td>801</td>
<td>660</td>
<td>152</td>
<td>649</td>
</tr>
<tr>
<td>Acres Rented</td>
<td>205</td>
<td>179</td>
<td>44</td>
<td>161</td>
</tr>
<tr>
<td>Yield/Acre</td>
<td>481</td>
<td>481</td>
<td>108</td>
<td>374</td>
</tr>
<tr>
<td>Operator Percentage</td>
<td>83.97%</td>
<td>90.25%</td>
<td>84.26%</td>
<td>-0.29%</td>
</tr>
<tr>
<td>Price/Bushel</td>
<td>$3.86</td>
<td>$4.03</td>
<td>$3.95</td>
<td>($0.09)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INCOME</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn (Oper Shr)</td>
<td>272.02</td>
<td>224.34</td>
<td>158.18</td>
<td>113.84</td>
</tr>
<tr>
<td>Government Payments</td>
<td>2.17</td>
<td>0.00</td>
<td>0.00</td>
<td>2.17</td>
</tr>
<tr>
<td>Crop Insurance Proceeds</td>
<td>28.82</td>
<td>35.91</td>
<td>36.58</td>
<td>-7.76</td>
</tr>
<tr>
<td>Other Income</td>
<td>0.53</td>
<td>2.75</td>
<td>8.98</td>
<td>-8.45</td>
</tr>
</tbody>
</table>

GROSS INCOME

- $303.54
- $263.00
- $203.75
- $99.79
2014 Data - Northwest Kansas

<table>
<thead>
<tr>
<th>Kansas Farm Management Association</th>
<th>Annual ProfitLink Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Summary</td>
<td>NON-IRRIGATED WHEAT</td>
</tr>
</tbody>
</table>

2014 Data - Northwest Kansas

<table>
<thead>
<tr>
<th>PROFIT CATEGORY (per Acre)</th>
<th>High 1/3</th>
<th>Mid 1/3</th>
<th>Low 1/3</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Farms</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Enterprise Acres</td>
<td>998</td>
<td>1,154</td>
<td>918</td>
<td>79</td>
</tr>
<tr>
<td>Acres Owned</td>
<td>322</td>
<td>411</td>
<td>102</td>
<td>220</td>
</tr>
<tr>
<td>Acres Rented</td>
<td>675</td>
<td>773</td>
<td>816</td>
<td>-141</td>
</tr>
<tr>
<td>Yield/Acre</td>
<td>31.13</td>
<td>34.16</td>
<td>29.07</td>
<td>2.08</td>
</tr>
<tr>
<td>Operator Percentage</td>
<td>77.10%</td>
<td>87.51%</td>
<td>87.16%</td>
<td>-0.35%</td>
</tr>
<tr>
<td>Price/Bushel</td>
<td>$6.12</td>
<td>$6.03</td>
<td>$5.76</td>
<td>$0.36</td>
</tr>
</tbody>
</table>

INCOME

<table>
<thead>
<tr>
<th>Wheat (Oper Shr)</th>
<th>141.72</th>
<th>178.47</th>
<th>140.73</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Payments</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Crop Insurance Proceeds</td>
<td>34.13</td>
<td>18.91</td>
<td>26.00</td>
<td>8.12</td>
</tr>
<tr>
<td>Other Income</td>
<td>2.48</td>
<td>3.04</td>
<td>3.00</td>
<td>-0.52</td>
</tr>
</tbody>
</table>

GROSS INCOME

| $178.33 | $201.27 | $169.73 | $8.50 |

EXPENSE

Labor Hired	10.11	6.96	8.57	1.53
General Machinery Repairs	15.68	14.57	19.38	-3.70
Interest Paid	6.35	6.68	5.70	0.68
Seed/Other Crop Expense	6.40	7.81	9.37	-2.92
Crop Insurance	14.75	18.15	14.40	0.34
Fertilizer/Lime	27.45	40.17	42.89	-15.44
Machine Hire - Lease	10.96	17.77	7.05	3.81
Fees, Publications, Travel	1.75	1.81	2.22	-0.47
Gas, Fuel, Oil	10.10	9.46	14.11	-4.01
Crop Storage & Marketing	0.02	0.01	1.47	-1.45
Personal Property Tax	1.66	1.33	1.72	-0.06
General Farm Insurance	3.51	3.88	3.96	-0.45
Utilities	0.54	0.81	0.68	-0.14
Cash Farm Rent	0.22	12.51	36.88	-36.66
Herbicide, Insecticide	12.15	31.30	31.76	-19.61
Auto Expense	0.52	0.99	0.51	0.01
Depreciation	24.11	20.58	41.02	-16.90
Real Estate Tax	0.04	0.53	0.36	-0.32
Unpaid Operator Labor	14.18	14.75	20.81	-6.83
Interest Charge	7.23	6.34	16.11	-8.88
Land Charge	13.60	19.68	5.86	7.73

TOTAL EXPENSE

| $181.28 | $239.09 | $284.83 | ($103.55) |

NET RETURN TO MANAGEMENT

| ($2.95) | ($37.91) | ($115.09) | $112.14 |

NET RETURN TO LABOR-MGMT

| $21.33 | ($16.10) | ($85.71) | $107.04 |
2014 Data - Northwest Kansas

Kansas Farm Management Association Annual ProfitLink Summary

IRRIGATED CORN

<table>
<thead>
<tr>
<th>Number of Farms</th>
<th>High 1/3</th>
<th>Mid 1/3</th>
<th>Low 1/3</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Acres</td>
<td>474</td>
<td>750</td>
<td>155</td>
<td>191</td>
</tr>
<tr>
<td>Acres Owned</td>
<td>153</td>
<td>103</td>
<td>103</td>
<td>0</td>
</tr>
<tr>
<td>Acres Rented</td>
<td>321</td>
<td>178</td>
<td>321</td>
<td>0</td>
</tr>
<tr>
<td>Yield/Acre</td>
<td>65.24</td>
<td>61.90</td>
<td>59.73</td>
<td>5.51</td>
</tr>
<tr>
<td>Operator Percentage</td>
<td>87.32 %</td>
<td>96.14 %</td>
<td>70.35 %</td>
<td>7.85 %</td>
</tr>
<tr>
<td>Price/Bushel</td>
<td>$6.87</td>
<td>$6.92</td>
<td>$6.27</td>
<td>($0.65)</td>
</tr>
</tbody>
</table>

INCOME

Soybeans (Oper Shr)	573.16	61.62	9.46	19.40
Crop Insurance Proceeds	222.37	10.46	49.27	20.14
Other Income	3.53	-1.03	1.32	0.29
GROSS INCOME	$575.74	$756.46	$542.46	$114.20

EXPENSE

Labor Hired	40.10	21.37	30.83	9.27
General Machinery Repairs	25.28	24.81	44.42	-14.83
Irrigation Machinery Repairs	15.62	16.52	20.91	-5.39
Interest Paid	24.98	15.04	22.77	-7.29
Feed	0.00	0.00	0.06	-0.06
Seed/Other Crop Expense	101.63	95.96	110.43	-2.47
Crop Insurance	24.74	15.14	36.16	-20.02
Fertilizer/Lime	102.97	98.34	120.73	-27.77
Machine Hire - Lease	3.72	22.60	14.53	-10.81
Fees, Publications, Travel	4.67	5.62	4.96	0.71
Gas, Fuel, Oil	27.30	30.14	34.41	-4.31
Irrigation Gas, Fuel, Oil	20.23	30.07	54.27	-24.25
Crop Storage & Marketing	3.98	40.71	0.89	-3.00
Personal Property Tax	20.18	4.08	6.63	-4.12
General Farm Insurance	11.97	11.85	15.63	-3.65
Utilities	5.20	10.35	6.12	-4.23
Cash Farm Rent	28.13	62.19	10.75	-17.39
Herbicide, Insecticide	57.35	95.93	15.63	-32.14
Conservation	0.00	2.94	0.00	2.94
Auto Expense	0.49	1.53	3.17	-1.66
Depreciation	58.07	70.80	33.44	16.26
Real Estate Tax	3.99	3.40	0.03	3.37
Unpaid Operator Labor	30.52	60.27	47.23	-12.99
Interest Charge	25.64	35.95	35.58	-0.37
Land Charge	40.62	46.26	49.05	-8.43

TOTAL EXPENSE

$707.78 $636.50 $845.46 ($127.87)

NET RETURN TO MANAGEMENT

$466.65 ($78.05) ($203.29) $252.15

NET RETURN TO LABOR-MGMT

$119.65 $2.89 ($125.14) $244.79

IRRIGATED SOYBEANS

<table>
<thead>
<tr>
<th>Number of Farms</th>
<th>High 1/3</th>
<th>Mid 1/3</th>
<th>Low 1/3</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Acres</td>
<td>474</td>
<td>750</td>
<td>155</td>
<td>191</td>
</tr>
<tr>
<td>Acres Owned</td>
<td>153</td>
<td>103</td>
<td>103</td>
<td>0</td>
</tr>
<tr>
<td>Acres Rented</td>
<td>321</td>
<td>178</td>
<td>321</td>
<td>0</td>
</tr>
<tr>
<td>Yield/Acre</td>
<td>65.24</td>
<td>61.90</td>
<td>59.73</td>
<td>5.51</td>
</tr>
<tr>
<td>Operator Percentage</td>
<td>87.32 %</td>
<td>96.14 %</td>
<td>70.35 %</td>
<td>7.85 %</td>
</tr>
<tr>
<td>Price/Bushel</td>
<td>$6.87</td>
<td>$6.92</td>
<td>$6.27</td>
<td>($0.65)</td>
</tr>
</tbody>
</table>

INCOME

Soybeans (Oper Shr)	573.16	61.62	9.46	19.40
Crop Insurance Proceeds	222.37	10.46	49.27	20.14
Other Income	3.53	-1.03	1.32	0.29
GROSS INCOME	$524.57	$566.16	$444.58	$79.99

EXPENSE

Labor Hired	13.75	19.76	14.90	-1.15
General Machinery Repairs	10.58	19.32	39.19	-28.61
Irrigation Machinery Repairs	55.92	16.28	19.31	-36.81
Interest Paid	4.70	10.23	19.27	-14.57
Seed/Other Crop Expense	55.74	82.87	87.75	-32.92
Crop Insurance	1.99	8.51	27.60	-25.62
Fertilizer/Lime	34.60	42.46	62.03	-27.44
Machine Hire - Lease	3.62	2.78	10.63	-7.01
Fees, Publications, Travel	2.84	4.82	2.45	0.38
Gas, Fuel, Oil	18.70	28.15	24.54	-5.75
Irrigation Gas, Fuel, Oil	31.28	10.72	35.68	-4.38
Crop Storage & Marketing	0.00	1.43	0.00	1.43
Personal Property Tax	2.42	3.98	3.41	-0.99
General Farm Insurance	4.98	7.83	14.24	-9.26
Utilities	6.57	19.24	11.32	-4.04
Cash Farm Rent	9.24	109.42	1.89	97.53
Herbicide, Insecticide	34.18	32.29	53.42	-19.24
Auto Expense	1.51	1.55	4.55	-3.00
Depreciation	57.85	64.26	46.85	11.40
Real Estate Tax	0.00	4.06	2.25	-1.81
Unpaid Operator Labor	23.21	42.50	34.01	-10.51
Interest Charge	26.47	28.41	21.25	5.22
Land Charge	32.78	16.85	42.30	-5.52

TOTAL EXPENSE

$643.92 $577.33 ($166.59)

NET RETURN TO MANAGEMENT

$81.66 ($5.82) ($134.15) $225.80

NET RETURN TO LABOR-MGMT

$128.60 $71.09 ($85.23) $213.83
2014 Data - Northwest Kansas

Enterprise Summary

Number of Farms	6
Enterprise Acres	294
Acres Owned	136
Acres Rented	159
Yield/Acre	55.73
Operator Percentage	87.53 %
Price/Bushel	$6.10
Ret. to Labor/Mgmt	$10.66

INCOME

- Wheat (Oper Shr): $304.05
- Crop Insurance Proceeds: 0.83
- Other Income: 3.40

GROSS INCOME

$308.29

EXPENSE

- Labor Hired: 12.28
- General Machinery Repairs: 17.19
- Irrigation Machinery Repairs: 11.65
- Interest Paid: 6.38
- Seed/Other Crop Expense: 8.43
- Crop Insurance: 10.61
- Fertilizer/Lime: 54.29
- Machine Hire - Lease: 10.32
- Fees, Publications, Travel: 3.76
- Gas, Fuel, Oil: 25.57
- Irrigation Gas, Fuel, Oil: 5.40
- Crop Storage & Marketing: 0.00
- Personal Property Tax: 1.02
- General Farm Insurance: 7.73
- Utilities: 1.79
- Cash Farm Rent: 0.00
- Herbicide, Insecticide: 10.07
- Auto Expense: 0.19
- Depreciation: 37.48
- Real Estate Tax: 2.66
- Unpaid Operator Labor: 22.16
- Interest Charge: 14.13
- Land Charge: 36.52

TOTAL EXPENSE

$297.63

NET RETURN TO LABOR-MGMT

$1,075.27

2014 Data - Northwest Kansas

Enterprise Summary

Number of Farms	6
Number of Cows in Herd	127
Number of Calves Sold	100
Avg Weight of Calves Sold	599
Calves Sales Price / CWT	207.62

GROSS INCOME

$1,440.45

EXPENSE

- Labor Hired: 64.66
- General Machinery Repairs: 50.55
- Interest Paid: 19.79
- Feed: 237.44
- Pasture: 198.53
- Machine Hire - Lease: 13.52
- Fees, Publications, Travel: 6.24
- Vet Medicine/Drugs: 36.38
- Liv/Marketing/Breeding: 20.32
- Gas, Fuel, Oil: 25.13
- Personal Property Tax: 4.77
- General Farm Insurance: 12.54
- Utilities: 18.50
- Auto Expense: 1.80
- Depreciation: 38.39
- Real Estate Tax: 0.00
- Unpaid Operator Labor: 196.10
- Interest Charge: 129.62

TOTAL EXPENSE

$1,075.27

NET RETURN TO LABOR-MGMT

$625.94
SOIL BIOLOGY AND CARBON IN DRYLAND AGRICULTURE
Daniel K Manter¹, Lucretia Sherrod¹, and Gary A. Peterson²

¹USDA-ARS, Center for Agricultural Resource Research, Fort Collins, CO
²Dep. of Soil and Crop Science, Colorado State University, Fort Collins, CO

Abstract
The goal of this paper is to explore potential management strategies in dryland agriculture that can promote soil health and crop productivity. Traditional crop production in the semiarid Great Plains consists of conventional tillage management of winter wheat (Triticum aestivum L.) - summer fallow. In this study, we explore the potential of increased cropping intensity (i.e., reduced fallow frequency) to promote soil health and crop productivity. At all three dryland sites studied in eastern Colorado, increasing cropping intensity resulted in increasing wheat yields, increased soil carbon sequestration, and the promotion of beneficial bacteria in the soil.

Introduction
Soil organic matter is a critical component of all aspects of soil health (Johnston 1986) and is a complex mix of plant residues, microorganisms (living and dead) and the substrates produced by these organisms during decomposition. The soils organic matter influences the chemical, biological, and physical properties of soil in ways that are almost universally beneficial to crop production, such as promoting soil water infiltration and retention, nutrient availability, and the promotion of microbial biomass.

Soils are alive and teeming with microorganisms. In just one teaspoon of agricultural soil there can be one hundred million to one billion bacteria, six to nine feet of fungal strands put end to end, several thousand flagellates and amoeba, one to several hundred ciliates, hundreds of nematodes, up to one hundred tiny soil insects, and five or more earthworms. These organisms are essential for healthy growth of plants. For example, bacteria and fungi excretions help to form soil aggregates and provide food for other organisms via decomposition. Plants are the carbon producers of the world converting CO₂ to sugars via photosynthesis. While we are usually focused on the aboveground conversion of these sugars to biomass and crop yield, much of this carbon will remain in the system after harvest as crop residues and rhizodeposition. For example, up to 40% of the carbon fixed by plants is transferred to the soil rhizosphere (Lynch and Whipps 1990).

With the above in mind, one important question of agricultural management systems becomes how can we maximize soil health and carbon sequestration to promote maximum crop productivity in a sustainable and cost-effective manner? In this study we explore the influence of cropping intensity on the soil health properties of microbial biomass and soil organic carbon (SOC) after 24 years in no-till by analyzing soils from a long-term dryland cropping system project in eastern Colorado across three potential ET gradients near Sterling, Stratton and Walsh. Traditional practices in dryland agriculture of the semiarid Great Plains usually employ a wheat-fallow rotation. Fallowing land is frequently touted as a practical means to recharge soil water and promote subsequent crop yields. However, given the importance of plant C inputs to the soil and its role in soil health the question remains if this practice is sustainable over the long-term.
Materials and Methods

Site Descriptions

This study was conducted within a long-term sustainable dryland agroecosystems management project, which was initiated in 1985 in eastern Colorado to evaluate the effects of cropping intensity on production, water use efficiency and other selected soil chemical and physical properties (Peterson et al., 1993). This experiment has three major variables, 1) PET gradient, 2) topography (slope position), and 3) cropping intensity under no-till management. Soils at each site had been under conventional tillage crop-fallow management for over 50 years prior to the initiation of this study in 1985. The three sites represent an increasing PET gradient from north to south, but all have a long-term mean annual precipitation of 420 mm. The northern site at Sterling (40° 22' 12"N, 103° 7' 48" W) has a deficit water (precipitation - open pan evaporation (OPE)) of 1140 mm yr\(^{-1}\). The medium site at Stratton (39°10' 48"N, 102°15' 36" W) has a deficit water of 1290 mm yr\(^{-1}\). The southern site is at Walsh (37°13' 48"N, 102°10' 12"W) with deficit water of 1555 mm yr\(^{-1}\). The Sterling and Stratton sites represent approximately 73% and 83% of the relative PET respectively compared to the Walsh site (Peterson et al., 1998). The relative PET gradient is represented as low, medium and high for Sterling, Stratton and Walsh sites respectively.

Cropping systems representing a gradient of cropping intensities were placed across the soil sequences at each site in strips that were 6.1 m wide by 185 to 300 m long, depending on site. All phases (entry points) of each cropping system are present at each site every year accounting for a total of 11 treatments including a perennial native grass treatment. For example, WF cropping system requires two experimental units; one for wheat-fallow and the other for fallow-wheat in each of the two field replications. Cropping systems are: wheat (Triticum aestivum L.) - fallow (WF), wheat-corn (Zea mays L.)-fallow (WCF), wheat-corn-millet (Panicum miliaceum)-fallow (WCMF), and continuous cropping (CC) which included corn/sorghum [Sorghum bicolor (L.) Moench], wheat, hay millet and sunflower (Helianthus annuus) in order of frequency. The cropping system gradient is as follows: WF has an intensity factor of 0.50 (crops divided by yr in the rotation) and WCF, WCMF, and CC are 0.67, 0.75, and 1.0 respectively. A perennial grass treatment (G) also was established in the spring of 1986 with a seed mixture containing equal seed numbers of crested wheatgrass (Agropyron cristatum (L.) Gaertn., western wheatgrass (Agropyron smithii Rydb.), sideoats grama (Bouteloua curtipendula (Michx.) Torr.), little bluestem (Schizachyrium scoparium (Michx.) Nash), blue grama (Bouteloua gracilis (H.B.K.) Lag. ex Steud.), and buffalograss (Buchloe dactyloides).

Wheat Yields

Winter wheat yields were obtained within each PET site and slope and cropping system each year by harvesting with a small plot combine. A sub-sample of grain was taken to measure moisture and test weight. All yields are corrected for harvest moisture and presented based on market moisture of 12 percent. Only the first 12 years of the study is presented here as we wanted to compare more intensive rotations to WF as after the 12 year WF treatments dropped from the study. Yield data was averaged over slope positions and presented by PET site and cropping system.

Soil Carbon
Soil cores were taken to 10 cm depth from each treatment at all three sites and at all three slopes in the fall of 2009 after 24 years in no-till management. Cores were partitioned into 0-5, and 5-10 cm depth increments. Fifteen 2.54 cm diameter soil cores were obtained from each treatment combination and composited by depth. All visible plant material (roots, stems or leaves) larger than 2mm was removed and surface residue also was excluded from the samples. Soils were air dried and ground to pass a 2-mm sieve. A sub-sample of 20 to 25 grams was powder ground with a steel ball-mill grinder to pass through an 80 mesh sieve and analyzed for total C with dry combustion using a Leco True Spec CN auto analyzer (Leco, St. Joseph, MI) from a 0.2 g sub-sample. Carbonates were determined by using a modified pressure calcimeter method (Sherrod et al., 2002), and inorganic C was then subtracted from total C by dry combustion for determination of SOC. Two bulk density measurements were made per experimental unit at the time of soil sampling using a 5.36 cm diameter double-cylinder core sampler in 0-5 and 5 to 10 cm depth increments (Grossmand and Reinsch, 2002). The average of the two bulk density numbers were used to calculate soil C mass for the various pools (Table 2). Carbon concentrations were converted to mass using the following formula:

$$\text{kg ha}^{-1} = \text{ug C g}^{-1} \times \text{g soil cm}^{-3} \times (\text{depth increment in cm/10})$$

Each depth increment mass for all C fractions was then summed for a depth of 10 cm.

The particulate organic matter C (POM-C) was determined by dispersing a 25-g sub-sample with 40-mL of sodium hexametaphosphate (5 g L\(^{-1}\)) and shaking on a reciprocating shaker overnight (Gregorich and Ellert, 1993; Cambardella and Elliott, 1992). The soil suspension was then poured over a 53um screen and all the material retained on this screen (sand and POM) dried overnight at 60 °C. The sand and POM fraction was then placed in glass jars with metal rods placed on a roller table to powder grind the sample. Both total and inorganic C was measured in this using a LECO Ture Spec CN analyzer and a modified pressure calcimeter method (Sherrod, et al., 2002) where organic C was calculated as total C from dry combustion minus inorganic C.

Soil Biology

To characterize the soil microbial community, 0.5g soil samples (air-dried, ground and stored at 22 °C) were analyzed. Total DNA was extracted from each sample using the MoBio power soil DNA isolation kit (Mo Bio, Carlsbad, CA) according to the manufacturer’s instructions. Quantitative PCR (qPCR) amplification of the bacterial 16S rRNA genes (V1-V3 hypervariable region) was performed with the 27F and 388R primers (Lane et al. 1985; Marchesi et al. 1998). Each reaction contained 2 µl template DNA (diluted 1:20), 0.5 µM of each primer, and 1X Maxima SYBRgreen master mix (cat # K0242, Thermo-Fisher Scientific); amplification was performed as follows: 1) 95 °C for 8.5 min, 2) 95 °C × 15 sec, 58 °C × 30 sec, 72 °C × 60 sec, repeated 35 times, 3) 72 °C × 5 min. Genomic DNA isolated from *Pseudomonas putida* KT2440 was used as an external standard in order to calculate 16S rRNA copies per g soil FW extracted assuming a *P. putida* genome size of 3.174 fg and seven 16S rRNA copies per genome. qPCR efficiency was 93% and could detect as little as 100 *P. putida* genomes in a single PCR reaction.

Amplified DNA samples were then pooled in equimolar ratios to create a single bacterial DNA library; the pooled library was re-quantified using the KAPA Biosystems qPCR kits and subjected to pyrosequencing at four copies per bead with the Roche GS Junior Sequencing.
System (Branford, Connecticut). All sequencing read editing and processing was performed using previously described methods (Manter et al. 2010). After processing, each 16S library rarefied to 1000 sequence reads in order to standardize sampling effort for each sample. The abundance of previously identified beneficial bacteria genes, nitrogen-fixation (\textit{nifD}, \textit{nifH}), plant root elongation (\textit{acdS}, \textit{ipdC}), plant disease suppression (\textit{budC}, \textit{chit}, \textit{hcnA}), and nutrient acquisition (\textit{ppqA}, \textit{entF}, \textit{iucC}) in each 16S library was predicted using PiCRUSt (Langille et al. 2013). Total gene-specific abundance (copies g-1 soil FW) was calculated as the product of the relative abundance and the total 16S copies (copies g-1 soil FW) determine from the initial sample qPCR.

Results

Wheat yields under the two higher cropping intensity treatments with a wheat phase (WCF and WCMF) were compared to the business-as-usual treatment of WF (Fig 1). Although significant annual variation in yields were observed for all treatments, wheat yields typically increased with cropping intensity. For example, yields were higher in the WCF and WCMF 16 and 25 times out of a possible 36 (i.e., 12 years x 3 sites) respectively. Over the entire 12 year period, yield gains were greater than losses and the average increase in yield over the 12 years period was 8.6\% (WCF) and 12.1\% (WCMF) relative to the WF treatment.

All soil carbon pools significantly increased with cropping intensity. After 24 years of increased cropping intensity, soil POM increased significantly in all treatments relative to the traditional WF system (Fig 2). At all sites, the largest gains were observed in the grass system with lower, but significant, gains in the WCF and CC treatments. A similar trend in microbial biomass was observed for all sites and treatments, with the largest gains in the high ET potential site. For example, bacterial biomass increased by 149, 197, and 1022 \% in the WCF treatment at Sterling, Stratton and Walsh, respectively. A highly significant correlation between soil POM and bacteria (r = 0.890) or fungal (r=-0.777) biomass was observed across all sites and treatments.

The composition of the bacterial soil communities, determined by pyrosequencing, showed that community composition (i.e., species present) differed significantly between site and cropping intensity (data not shown). On a relative abundance basis, the variance in community composition was best explained by site (30.3\%), cropping intensity (17.0\%), and slope position (1.2\%). However, identification of the abundance of several beneficial bacterial genes showed that despite these taxonomic differences, cropping intensity had the largest influence on the abundance of beneficial bacteria (Fig 4). All of the beneficial bacteria quantified (i.e., N-fixation, P-solubility, biocontrol, root growth, and nutrient acquisition) increased significantly with cropping intensity. Interestingly, at the high ET potential site (Walsh), bacteria associated with root-growth had the greatest increases, increasing 3677\% (CRP vs WF), as compared to 545 and 400\% for Stratton and Sterling, respectively.
Figure 1. Yield in response to cropping intensity. Bars represent the percent increase in wheat yields for the WCF and WCMF relative to WF for each of three sites in eastern Colorado.

Figure 2. Particulate organic matter C (POM-C) in response to cropping intensity. White bars (1986) and gray bars (2009).
Figure 3. Soil microbial abundance in response to cropping intensity. White bars (1986) and gray bars (2009).

Figure 4. Soil microbial abundance in response to cropping intensity.
Discussion
In this report, we have focused on the impact of cropping intensity on soil C and microbial community structure in a 24 year long-term study in three dryland sites of eastern Colorado. At all three sites, significant gains in soil C and microbial biomass were observed. Perhaps most importantly, the reduction in fallow frequency did not reduce wheat yields and average yields increased (WCMF vs WF) by 18.6, 12.0, and 3.5% for the Sterling, Stratton, and Walsh sites over the first 12 years. A similar analysis, could not be conducted for the second 12 years of the study since the WF treatment was removed from the study.

Fallow is often touted as being beneficial for crop yields due to its potential to reduce ET and increase soil water available to subsequent wheat crops. However, at all three sites studied here, we observed an overall increase in wheat yields as fallow frequency was reduced. Consistent with the availability of soil water, the observed increases were highest in the low ET potential site (Sterling) and lowest at the high ET potential site (Walsh). We suggest that the gains in wheat yield can be traced to an overall increase in soil health driven by the accumulation of soil C and beneficial microbes under increasing cropping intensity.

Literature Cited
Managing Soil pH Highs and Lows

Dorivar Ruiz Diaz, Soil Fertility, Kansas State University
ruizdiaz@ksu.edu

Soil pH is usually higher in regions where the potential evapotranspiration is higher than rainfall. These conditions are naturally found in western regions of Kansas with less than roughly 20 inches of precipitation per year. Minimal leaching of cations like Ca\(^{+2}\), Mg\(^{+2}\), K\(^+\), and Na\(^+\) from the soil contributes to the high pH. However, the use of chemical fertilizers and other factors like organic matter decomposition can contribute to a significant decrease in soil pH creating areas of low pH particularly in the soil surface in the case of no-till system.

One common characteristic of alkaline soils is the accumulation of calcium carbonate (free lime) that is known as calcareous soils (Figure 1). These conditions of carbonate presence in the soil can generate severe micronutrient deficiencies and are usually noticeable in areas where the topsoil has been eroded or removed for leveling.

\[y = -0.001x^2 + 0.0486x + 7.824 \]

Figure 1. Soil pH and calcium carbonate (free lime) at the 0-6 inch depth.
The availability of most nutrients are influenced by soil pH. Metallic micronutrients like zinc, iron, copper, and manganese are usually highly available in acid soils. However the solubility of these nutrients is significantly lower in alkaline soils. Perhaps the most common nutrient deficiency found in alkaline soils is iron deficiency. Calcareous soils may contain high levels of total Fe, but in forms unavailable to plants. The solubility of this nutrient as determined by extractable DTPA-Fe is significantly lower at high pH values (Figure 2). Significant limitation in plant growth is common in crops like soybean and sorghum due to iron deficiency. Iron is usually considerably less soluble than Zn or Mn in soils with a pH value of 8 or more. Therefore, inorganic Fe contributes relatively little to the Fe nutrition of plants in calcareous soils, and most of the soluble Fe in the soil is complexed by natural organic compounds, making organic matter the main source of iron for crop uptake under this condition.

![Figure 2. Soil pH and extractable DTPA iron (Fe) under alkaline soils conditions.](image)

In areas with high levels of calcium carbonate (calcareous soils) the solubility of some nutrients (particularly micronutrients) can be significantly reduced, generating severe nutrient deficiencies (Figure 3).
Under alkaline conditions, macronutrients like phosphorus would be associated primarily with calcium to form calcium phosphate. However, these calcium phosphates can be easily attacked by acids including organic acids excreted by plant roots to release phosphorus for uptake. The high-pH, calcium-rich conditions of alkaline soils may require special considerations for fertility management particularly of micronutrients. The solubility of soil-applied nutrients like iron can be reduced significantly shortly after application and before plant uptake. In-furrow application, in direct contact with the seed is particularly important for plant uptake under alkaline or calcareous soil conditions.

Low soil pH with long term NT system

One concern with long term NT with N application in the surface is the development of low soil pH in the surface. This condition and the need for lime application may require further evaluations. Typically low soil pH near the surface often go along with high OM in long term NT system (Figure 4). And higher OM content can help reduce soluble Al (Figure 5). Therefore, the potential plant response to lime application may be lower, however studies are needed to determine if this is true and how much lowers soil pH values should get to justify lime
applications when compared to conventional tillage systems. But higher soil OM, and lower soluble Al should provide better growing conditions for plant roots.

Figure 4. Soil pH and OM stratification with long term NT (~20 years).

Figure 5. Soil OM and soluble Al. High OM help reduce soluble Al in the soil.
Scouting Sugarcane Aphids

Timing effective treatment to control sugarcane aphids (SCA) in sorghum depends on the size of the SCA population. To estimate the number of SCA in a field, follow these steps for scouting the field and use the Sampling Protocol (below) and % plants with honeydew (on back) to make treatment decisions.

First Detection: Is the Field at Risk?

Once a week, walk 25 feet into the field and examine plants along 50 feet of row (see right):

- If honeydew is present, look for SCA on the underside of a leaf above the honeydew.
- Inspect the underside of leaves from the upper and lower canopy from 15–20 plants per location.
- Sample each side of the field as well as sites near Johnsongrass and tall mutant plants.
- Check at least 4 locations per field for a total of 60–80 plants.

NOT Present?

If no SCA are present, or only a few wingless/winged aphids are on upper leaves, continue once-a-week scouting (protocol above).

Present?

If SCA are found on lower or mid-canopy leaves, begin twice-a-week scouting. Use the Sampling Protocol (above) and % plants with honeydew (on back).
SCA Threshold by Growth Stage

Estimate the percentage (%) of infested plants with large amounts of sugarcane aphid (SCA) honeydew (see right) to help time foliar insecticides for SCA control on sorghum.

<table>
<thead>
<tr>
<th>Growth Stage</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Boot</td>
<td>20% plants infested with localized area of heavy honeydew and established aphid colonies</td>
</tr>
<tr>
<td>Boot</td>
<td>20% plants infested with localized area of heavy honeydew and established aphid colonies</td>
</tr>
<tr>
<td>Soft Dough</td>
<td>30% plants infested with localized area of heavy honeydew and established aphid colonies</td>
</tr>
<tr>
<td>Dough</td>
<td>30% plants infested with localized area of heavy honeydew and established aphid colonies</td>
</tr>
<tr>
<td>Black Layer</td>
<td>Heavy Honeydew and established aphid colonies in head *only treat to prevent harvest problems **observe Preharvest intervals</td>
</tr>
</tbody>
</table>

Table courtesy of Angus Catchot at Mississippi State University

Learn more about sugarcane aphids at: http://myfields.info/pests/sugarcane-aphid
Wheat Curl Mite, *Aceria tosichella*.

Wheat curl mite on leaf.

Close-up of wheat curl mite (SEM).
Introduction

The wheat curl mite is widely distributed in North America. These tiny Eriophyid mites are important vectors of wheat streak mosaic virus (WSMV) which is one of the most destructive wheat diseases in western Kansas. They are also vectors of the High Plains Virus, a disease of wheat and corn in the Great Plains, and Triticum Mosaic Virus (TrMV). Combined infections of WSMV and TrMV can be especially damaging in wheat.

Life History

Adult and immature wheat curl mites are tiny, white, cigar-shaped organisms with four legs near the head. They are nearly invisible to the naked eye and fit between the veins of the wheat leaves. Eggs are placed in rows along leaf veins. The mites reproduce most rapidly at 75° to 85°F. Reproduction stops at temperatures near freezing, but the mites can survive for several months at near freezing temperatures and for several days at 0°F. Under good conditions, a generation can be completed in 10 days. Most mites are found on the terminal leaves and move to each new leaf as it emerges. Heavy mite populations can cause the leaf margins to roll or curl inward hence the name. As the wheat plant dries down, the wheat curl mites congregate on the flag leaves and even the glumes of the head where they are picked up by wind currents and carried to their over-summering grass hosts including volunteer wheat, corn and a few other grasses. As summer hosts start to dry down the reverse process occurs and mites are carried by winds to newly emerged winter wheat. Hail during the heading period can lead to high oversummering populations by knocking heads containing wheat curl mites to the ground and starting early volunteer. This early volunteer can then be immediately infested with wheat curl mites.

Management Practices

Destruction of volunteer wheat at least 2 weeks prior to planting winter wheat in the fall is the most effective management practice for this mite and the disease that it vectors. Avoiding early planting can also reduce wheat curl mite numbers and the length of time that they have to transmit wheat streak. Varietal selection can also be an important way to reduce the impact of wheat streak. Producers in areas where wheat streak is common should avoid varieties that are highly susceptible to WSMV. The KSU cultivar RonL is a white wheat that carries a high level of resistance to WSMV provided it is not exposed to extremely high temperatures in vegetative growth stages. Thus, RonL should be planted mid-season to ensure its resistance is not compromised by high temperatures that may occur in either early fall or late spring. Additional information on varietal susceptibility to wheat streak is available in KSRE publication MF-991: Wheat Variety Disease and Insect Ratings. To date, control of wheat curl mites with foliar miticides has not been shown to be an effective practice.

Page last updated 10/30/2013 by J.P. Michaud.
History
The wheat stem sawfly, *Cephus cinctus* Norton (Hymenoptera: Cephidae), is a herbivorous wasp that attacks a number of native grass species in North America. It was first reported attacking wheat in Canada in 1896 and soon spread to become a serious pest of spring wheat throughout the Dakotas, Montana, and Wyoming. The wheat stem sawfly has long been present in wild grass species over a much broader range, including Nebraska and Kansas, although neighboring wheat fields were unaffected.

Historically, only spring wheat was attacked. It was not until the 1980s that infestations were observed in winter wheat. By 1996, scientists working in Montana determined that the pest had evolved faster development and was emerging some 20 days earlier than it previously had, enabling it to survive in early-maturing winter wheat. Recent observations in Nebraska (2012) indicate that 50 percent of adults emerged by May 22, although this was a particularly early spring.

Collectively, research suggests that attacks on winter wheat may have been occurring for some time but went unnoticed because larvae did not complete development and cut stems. This may be the case in Kansas currently, with populations under strong selection to evolve faster development. It is not yet clear if recent winter wheat infestations in the Nebraska panhandle and northeastern Colorado result from local populations evolving to exploit winter wheat, or the southerly range expansion of an adapted strain. Local populations express significant variation in biology, behavior, and genetics that suggest regional adaptations. Presently, Kansas is on the southeastern boundary of the region experiencing wheat stem sawfly problems in winter wheat.

Identification
The adult wasp is about half an inch long with a black body and three broad, transverse yellow bands on the abdomen. Legs are yellow and wings are a dark, smoky grey. Females are significantly larger than males (Figure 1) with a short, curved ovipositor that is externally visible (Figure 2). Eggs are whitish and elongate, difficult to observe, and usually laid in the uppermost portions of the stem (Figure 3). Larvae are initially colorless (Figure 4), soon turning cream-colored with a dark head capsule; they feed inside stems, moving to the base of the plant as they mature. Infested stems typically contain abundant frass that looks like sawdust, and larvae wriggle into a characteristic S-shape when removed (Figure 5). Another insect commonly occurring in wheat stems is the wheat stem maggot, *Meromyza americana* Fitch. Its larvae are smaller and legless. Cleanly severed stems and stubble ends packed with frass (Figure 6) indicate the presence of wheat stem sawflies.

Biology and Behavior
The wheat stem sawfly has only one generation per year. Adults emerge from the previous year’s stubble over a period of three to five weeks in spring. As with most insects, the emergence timetable is dictated by temperature and varies with latitude and among regional populations. Males emerge slightly ahead of females and mating takes place as soon as females emerge, unless severe weather
90-day period of larval diapause under cold temperature conditions, followed by a pupation period that lasts up to three weeks. Pupation occurs within the stem (Figure 8) and adults emerge in mid to late spring. Although adults have been known to disperse as far as one mile, they are relatively weak fliers and tend to orient to the nearest suitable host plants.

Larval girdling severely weakens the stem and leads to plants that lodge easily when stressed by wind. The main economic impact of wheat stem sawfly is lodged plants that cannot be picked up by the combine, and reduced harvest efficiency as slower combine speeds are required to salvage girdled plants. In addition, larval feeding disrupts translocating tissues and diminishes the photosynthetic capacity of the plant during the critical period of grain fill, reducing test weight and protein content. Both kernel weight and the number of kernels per head are affected, reducing grain weight by 10 to 25 percent and protein content by around 1 percent. However, estimates of per-plant yield reduction may underestimate yield impact at field level because of the tendency of larger plants with greater yield potential to be preferentially infested. Shriveled and misshapen kernels are another indication of wheat stem sawfly infestation (Figure 9), but these symptoms also may have other causes.

Management

Cultural Control

Various cultural tactics are essential components of an effective wheat stem sawfly management strategy. It is most important to avoid planting wheat continuously in the same field once the wasp has been detected as this can lead to a very rapid increase in populations. Non-host
Grains such as oats and rye can be planted as trap crop strips along field borders adjacent to last year’s stubble. This approach can reduce infestation of wheat and decrease wheat stem sawfly populations, but is not effective when wheat stem sawfly is abundant or emerging from stubble within the same field.

Increasing wheat stem sawfly problems have been attributed to adoption of no-till practices that favor overwintering survival of immature stages. Thus, tillage has been suggested as a control tactic. Shallow tillage can be used to disturb and expose infested stubble on the surface, causing larvae within to either desiccate in summer or freeze in winter. Unfortunately, no-till is the most important means of soil moisture conservation on rain-fed acreage, so tillage is not an acceptable control tactic for this region. Additionally, tillage can yield inconsistent results in reducing adult wheat stem sawfly populations, because of its dependence on environmental factors to produce mortality. It also has negative impacts on beneficial parasitoids. Burning of stubble is also ineffective and associated with more negative (loss of organic matter) than positive impacts on the cropping system.

Work in North Dakota suggests that early swathing of wheat (once grain moisture drops below 40 percent) can be used to salvage yield and is usually recommended if infestation reaches or exceeds 15 percent of stems as the crop approaches maturity. Swathing requires investment in additional equipment and results in higher energy costs than direct combining. Sampling should be conducted at different places in the field — if the infestation is low, only field borders may need to be swathed. Swathing at a high cutting height (just below the heads) is recommended to help preserve beneficial parasitoids that pupate higher up in the stem.

Host plant resistance
Solid-stemmed (SS) wheat varieties have stems filled with pith to varying degrees. The SS trait presents mechanical resistance to boring larvae and has been effective in reducing both yield losses and local wheat stem sawfly populations. Early solid-stemmed varieties, such as ‘Rescue’ were developed in the 1950s and suffered from considerable yield drag, but more recently developed varieties have yield comparable with high-yielding, hollow-stemmed varieties. Newer solid-stemmed varieties include Choteau, released in 2003 from the Montana Agricultural Experiment Station; AC Lillian, released in 2006 from Agriculture Canada; and Mott released in 2009 from the North Dakota Agricultural Experiment Station. However, because expression of the SS trait interacts with environmental factors such as sunlight and temperature, cloudy and rainy weather can prevent the filling of the stem with pith and render solid-stemmed varieties more susceptible. Larvae in solid-stemmed plants have lower survival and less impact on yield, although they remain equally susceptible to parasitism. If wheat stem sawfly infestation reaches or exceeds 15 percent of plants, a solid-stemmed variety is recommended for planting in subsequent years. Although use of solid-stemmed varieties is currently a cornerstone of wheat stem sawfly management in the northern Great Plains, no such varieties have yet been developed for this region.

Chemical control
Insecticides are not recommended for wheat stem sawfly control for a variety of reasons. Wheat is a low-value crop grown on large acreage, making pesticide applications relatively expensive. Immature stages of the pest are all protected within the stem and trials indicate that seed treatments are ineffective, so treatments must target adults before eggs are laid. A number of insecticide labels claim to “aid in control of adults,” but unfortunately, wheat stem sawfly adults emerge over an extended period and do not feed, substantially reducing their exposure. Adults must come into direct contact with an insecticide to be killed and are able to enter fields shortly after an insecticide application with minimal knockdown. Some insecticide trials timed sprays to target early, mid, and late emergence of wheat stem sawfly and found that as many as three applications of a pyrethroid insecticide only reduced infestation by half, a benefit that was far exceeded by application costs. In addition, pesticides will reduce populations of parasitoids and predators that will provide more cost effective natural control, even if it is not complete.

Biological control
Various natural enemies attack the wheat stem sawfly in its immature stages and help to suppress populations to varying degrees in different localities. The primary parasitoid of wheat stem sawfly larvae is the wasp Bracon cephi (Gahan), although B. lissogaster Muesebeck also contributes mortality in natural grassy areas. These wasps are ectoparasitoids that lay their eggs on wheat stem sawfly larvae within the stem (Figure 10), and then feed externally on their host. Although the parasitized larva feeds for some time, it does not survive to cut the stem and as a result, plant damage and yield impact are substantially diminished. Unlike the wheat stem sawfly, parasitoids have a second generation close to, or just after, wheat harvest and their effectiveness in different localities may partly depend on their ability to find alternative hosts for overwintering. Wheat should be harvested with a high cutting height (just below heads) to conserve parasitoids that pupate higher in wheat stems. Parasitoids have tracked infestations of wheat stem sawfly into Colorado and Nebraska, and they can be expected to contribute to mortality in Kansas, although no data is yet available.

Figure 10. Larva of Bracon cephi.
Author
J.P. Michaud, Ph.D.
Entomologist, Agricultural Research Center, Hays

The author thanks Jeff Bradshaw for sharing current observations, Pat Beauzay and Robert Peterson for use of photographs, and Janet Knodel for reviewing the manuscript.

Photo credits
Figures 1, 3, 4, 5, 7, 8, 10: R.K.D. Peterson, Montana State University.
Figures 2, 6: Pat Beauzay, North Dakota State University
Figure 9: Canadian Grain Commission

Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned.
Publications from Kansas State University are available at www.ksre.ksu.edu
Publications are reviewed or revised annually by appropriate faculty to reflect current research and practice. Date shown is that of publication or last revision. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved.
In each case, credit J.P. Michaud, Wheat Stem Sawfly, Kansas State University, April 2013.
Kansas Farm Financial Overview – A Financial Crisis?

Gregg Ibendahl
Department of Agricultural Economics
Kansas State University
Ibendahl@ksu.edu, (785) 477-2071

Average Farm Size for KFMA Grain Farms

Percent Rented Crop Acres – by Region

75% rented acres = 3 rented acres to 1 owned acre
66% rented acres = 2 rented acres to 1 owned acre

Value of Farm Production (VFP) for KFMA Grain Farms

KFMA Net Farm Income Since 1975 for Crop Farms

Big drop in NFI in 2013 and 2014 — Mirrors the period from 1980 and 1981

Average Adjusted NFI – by Region

Average Adjusted NFI – by Profitability Decile

#9 – Usually breaks even
#10 – Typically shows a loss

Balance sheet

Debt use actually peaked in 1978 — Asset declines followed

Debt-to-Asset ratio would appear to be a trailing indicator
Yearly Percentage Change in Assets – Selected Profitability Groups

Yearly Percentage Change in Debt – Bottom Profitability Group

Yearly Percentage Change in Debt– Bottom Profitability Group – Western Kansas

Yearly Percentage Change in Equity– Selected Profitability Groups

Any number above zero means farm assets increased.

Any number below zero means farm assets decreased.

Why didn't Western KS add to it’s debt last year?
Are farmer's credit lines tapped out?

Average KFMA Crop Farm Debt – by Region

Average KFMA Crop Farm Equity – by Region

Filter Settings - Decile ranking: (1, 10)

Filter Settings - location: (West)

Filter Settings - Decile ranking: (10, (Empty))
Selected Components of Crop Production as a Percentage of Total Costs – Western Kansas

- All machinery costs
- All machinery without fuel
- Fuel
- Depreciation

Interest charge is also part of all machinery costs.

Adjusted Crop Machinery Investment per Acre – by Region

Extra machinery has not affected total machinery costs.
UAVs in Crop Production:
FINE-TUNING CROPPING SYSTEMS
VIA INTEGRATION OF NEW
TECHNOLOGIES
Ignacio A. Ciampitti, Cropping Systems Specialist
K-State Research & Extension
ciampitti@ksu.edu, 785-410-9354
@KSUCROPS (TWITTER)

Presentation Outline: sUAVS
sUAVS (unmanned aircraft vehicle systems)
- Difference between Hex vs. Fixed Wing (Plane)
- Scalability Issue/ Imaging Processing Step
- Agronomic Application for multiple crops
 - Scouting and Diagnosing Purposes
 1) Weed Identification
 2) Biomass and Grain Estimation
 3) On-farm production problems
 4) Herbicide Drift
 5) Crop Re-Planting Tool
 6) Detection of Plant Height
 7) Phenotyping for stresses
 8) Pest Surveillance

sUAVS: Difference between Hex vs. Plane
Hex
KSU Dil S800 Spreading Wings hexacopter: Collect low altitude (~325 ft) yielding pixel size of ~ 0.5 in. pics

Common Features
- Color IR digital camera (blue, green, and NIR wavelengths).
- Purpose of Computing the NDVI (Normalized Difference Vegetation Index).

Plane
CSU Zephyr sUAV fixed wing aircraft, equipped with a digital CIR camera and a high resolution color video camera.

Satellite Images: Comparative Vegetation

3D Terrain Model

Imaging Processing
- In 25,000 sq. ft (half-acre) > 150 pictures are taken = 1 IMAGE.
- Images collected are processed by a Software.

Agronomic Applications:
1- Winter Wheat: ID Weeds

Winter Wheat: ID Weeds
sUAS image at 5 m

Winter Wheat: ID Weeds
sUAS image at 30 m

2- Biomass & Yield: Grain Sorghum
About 50 m
Grain Sorghum: Biomass & Yield

About 15 m

Grain Sorghum: Biomass & Yield

About 1 m

NDVI Map: Sorghum field

About 15 m

Corn Yield Estimation: Soil-type

Sandy Soils

4- Herbicide Drift: Soybean

Soybean: Herbicide Drift
Temporal and spatial changes in plant height can be predicted via imagery collected by UAS. Plant height patterns could assist in the rapid phenotyping and, consequently, yield prediction.

Plant height prediction via imagery collected by UAS presented a stronger correlation with the ground truth data when corn plants were at flowering as compared with 2-weeks before flowering.

Biomass, NDVI and plant height are correlated

Average growth rate: 2.2 cm/d
Color Infrared (CIR) Research

Color infrared (DRS Tamarisk® 640 thermal camera) map for the canola field, the redder the area the more vegetated the ground.

Blue NDVI (BNDVI) Research

Blue NDVI (BNDVI, modified Canon S100 CIR digital camera) map for the canola field, as the color green intensity increases the higher is the canola mass.

Colorized temperature map over canola field, depicting differences in canopy temperature among replications measured with the sUAS (04/25).

Canola Biomass, BNDVI & Canopy Temperature Research

- Canola biomass at flowering stage was highly and positively correlated with the BNDVI.
- Canola biomass was negatively associated, but presented a non-linear relationship with canopy temperature.
- The model fitted was similar to the one previously documented for the relationship between photosynthesis and temperature at the leaf scale for corn.
Outline
- sUAVS
- Hex vs. Plane
- Imaging
- Ag Applications
- Summary

Canopy Temperature: Corn
- Flight at Flowering
- Thermal Mosaic
- Corn Experiment

Canopy Temperature: Corn Trial
- Flight at Flowering
- Colorized Temp. Mosaic

Daily Canopy Temperature Fluctuations: Differential Response related to Hybrids
- Drought
- Irrigated
- Time of the day

Daily Canopy Temperature Fluctuations: Differential Response related to Hybrids
- 2C797
- 2P768

Canopy temperature calculated from the sUAVS was close (but lower) to the SmartCrop Sensor measurement
- $Y = 1.5X$
- $R^2 = 0.78$
Conclusions

- **NEW TECHNOLOGIES**: the use of sUAS will increase the input efficiency and utilization of new precision Ag tools.
- Several Ag applications are possible with the use of this technology.
- New Decision Support Tools are needed in complementary with the use of the technology. Color image = Fertilizer N?
- More applications are currently investigated: yield prediction, canopy temperature in other crops, nutrient status, disease management, etc.
- Service providers are needed and real cost-benefit studies need to be investigated to provide information on this technology.
Cover Your Acres – Winter Conference
January 19-20, 2016

National Weather Service
Goodland, KS
Web: weather.gov/gld
Email: nws_goodland@noaa.gov
Phone: 785-899-6412

Topics
- NWS Goodland Overview
- Navigating NWS web pages
- Measuring precipitation
- CoCoRaHS program
- El Nino: What it is, local impacts

National Weather Service
Executive Branch
Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
WFO Goodland

NWS Field Office
Areas of Responsibility

Operations Area
Staff
17 Mets, 3 E/T, 1 ITO, 1 Admin
2/3 forecasters always on duty

Forecaster Workstation: AWIPS
(Advanced Weather Interactive Processing System)
Information Flow

- ASOS & AWOS: Automated Surface Stations
- Automated and manual river gauges
- Doppler Radar
- Cooperative Observers
- Storm Spotters
- NOAA Weather Radio
- AWIPS (surface, upper air, lightning, satellite, radar data, numerical models, WarnGen, Graphical Forecast Editor)
- 800 MHz radio, FEMA NAWAS

Graphics drawn for 17 weather elements out to 7 days

Data Points Every 2.5 km (1.6 mi)

NAVIGATING THE NATIONAL WEATHER SERVICE WEBSITE
Hourly weather graph of all weather parameters to 7 days

3-hourly maps of all weather parameters to 7 days

Doppler radar

weather.gov/goodland
Radar and Rainfall Estimates

Volume Coverage Pattern

Cross Section of Thunderstorm

Radar Derived Precipitation Estimates
What is El Nino?

The atmosphere responds to warm sea surface by generating persistent episodes of thunderstorms. As a result, jetstream is strengthened over Pacific and southern U.S. This gives more opportunities for unsettled weather from CA to GA.

Winter Outlook

- Issued by Climate Prediction Center
- Based upon:
 - Presence of El Nino/La Nina conditions
 - Recent 10-15 year trends vs normal
 - Persistent wet or dry soil in summer
 - Snow-ice extent
 - Long range forecast models
- Do not forecast individual storms

Past El Nino’s Impact on Temperature

Temperature Outlook

Little signal favoring either warmer or cooler than normal for Colorado and Kansas

Jan-Mar 2016

Apr-Jun 2016
Past El Nino’s Impact on Precipitation

Precipitation Outlook
Some signal for above normal winter precipitation (especially later winter) for Colorado - Kansas
Jan-Mar 2016
Apr-Jun 2016

Okay, so...

Given the likelihood of a strong El Nino to continue through spring of 2016:
- Higher confidence of above average Jan-May precipitation...(late winter-early spring)
- Little confidence in any cold/warm departure.
- El Nino does not predict individual storms, only background signal

QUESTIONS?
Considerations When Developing Your 2016 Weed Management Plan

Curtis R. Thompson
K-State Agronomy Extension Weed Science
cthompso@ksu.edu
785-532-5776

Managing glyphosate resistant Palmer amaranth and Kochia

Plan early!
Control a germinating weed!

• Using PREemergence herbicides BEFORE the weed emerges is key to success for management of both kochia and Palmer amaranth!

• My motto for winter meetings!
USE A PRE, or DON’T CALL ME!

Using a PRE allows for a two or more pass system,
PRE followed by (fb) POST

ALL ARE TOO BIG!!!
Glyphosate Res. Palmer amaranth and Kochia

FOR Kochia when do we apply these PRE actives!

Fall? Winter? Spring?

PRE active ingredients effective on kochia!

• Triazines (5) $3.80/lb ai, $7.25/0.375 lb ai
 - Atrazine – use when planting corn, sorghum, or millet
 - Metribuzin – use when planting soybean or fallow prior to wheat
• Growth regulators (4) $12.50/qt, $2.43/oz
 - Dicamba – essential needing small amounts of activating rainfall. Clarity, Distinct
• HPD inhibitors (27) $8.72/oz, $5.62/oz, $7.17/oz, $75.65/gal, $63.76/gal
 - Isoxaflutole, Sencor, Balance Pre, Balance Flexx, or Corvus can be used ahead of fallow to wheat or Flexx & Corvus ahead of corn.
 - Lumax EZ or Flexx & Corvus ahead of corn or sorghum
• PPO inhibitors (14) $6.46/fl oz, $4.20/fl oz, $26.10/lb
 - Sharpen has excellent activity on kochia – can be used ahead of planting corn, sorghum, soybean, or fallow prior to wheat.
 - Sulfentrazone, Spartan or Authority based products. Use ahead of planting soybean, Spartan ahead of sunflower, Authority MTZ ahead of fallow going to wheat.
• Acetamides (15) $9.00/oz, $3.06/fl oz
 - Zidua or Anthem have good activity on kochia. More moisture required for activation. Two 0.75 inch rains are ideal. Essential to mix with dicamba. Can be used ahead of planting corn or soybean or fallow ahead of wheat. Can be mixed with triazine – see above restrictions.
Cumulative GDD and Date for Start (10%), End (90%), and Duration of Kochia Emergence, Dille et al.

<table>
<thead>
<tr>
<th>Location & site</th>
<th>Site</th>
<th>GDD to 10% E</th>
<th>Date</th>
<th>GDD to 90% E</th>
<th>Date</th>
<th>GDD Duration 10% to 90% E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lingle, WY</td>
<td>NC</td>
<td>76</td>
<td>3/21</td>
<td>191</td>
<td>4/10</td>
<td>115</td>
</tr>
<tr>
<td>Mitchell, NE</td>
<td>NC</td>
<td>84</td>
<td>3/17</td>
<td>456</td>
<td>5/7</td>
<td>372</td>
</tr>
<tr>
<td>Scottsbluff, NE</td>
<td>NC</td>
<td>69</td>
<td>3/15</td>
<td>415</td>
<td>4/29</td>
<td>346</td>
</tr>
<tr>
<td>Hays, KS</td>
<td>Crop</td>
<td>238</td>
<td>3/18</td>
<td>365</td>
<td>3/24</td>
<td>127</td>
</tr>
<tr>
<td>Hays, KS</td>
<td>NC</td>
<td>137</td>
<td>3/31</td>
<td>173</td>
<td>4/10</td>
<td>36</td>
</tr>
<tr>
<td>Ness City, KS</td>
<td>NC</td>
<td>114</td>
<td>3/11</td>
<td>475</td>
<td>4/18</td>
<td>361</td>
</tr>
<tr>
<td>Garden City, KS</td>
<td>Crop</td>
<td>283</td>
<td>3/31</td>
<td>1056</td>
<td>5/26</td>
<td>773</td>
</tr>
</tbody>
</table>

EPP herbicides applied March 15, 2013 for kochia control, Tribune, KS.

% Control

- Atrazine 1.0 lb ai $3.80
- Atrazine 1.0 lb ai + Banvel 1 pt $16.30
- Metribuzin 0.375 lb ai $7.25
- Metribuzin 0.375 lb ai + Banvel 1 pt $19.75

Fall herbicides applied Dec 7, 2014 for kochia control, Tribune, KS.

% Control

- Bal PRO +atra 2 fl oz+1 qt $12.50
- Corvus+atra 4 fl oz+1 qt $32.50
- Atrazine 1 qt $3.80
- Atra+Clarity .75 qt+ 1 pt $15.35
- Atra+Clarity+.75 qt+2 oz $22.00
- Atra+Clarity+Zidua .75+.5pt+2.5oz $31.60
- Authority MTZ 12 oz $19.60

Winter herbicides applied Feb 3, 2015 for kochia control, Tribune, KS.

% Control

- Corvus+atra+Clarity 4 fl oz+1 pt+12 oz $40.00
- Atrazine+Clarity 1.5 pt+16 fl oz $15.35
- Atrazine+Clarity 1 qt+12 fl oz $13.15
- Atra+Clarity+Sharpn .75+5pt+2oz $22.00
- Atra+Clarity+Zidua .75+5pt+2.5oz $31.60
- Authority MTZ 12 oz $19.60

2015 applications made on March 10

EPP/POST herbicides applied March 10,2015 for kochia control, Tribune, KS. Kochia at cotyledon stage

% Control

- RoundupPowerMax 1 qt $6.10
- RPM+Banvel 1 pt $18.60
- RPM+Banvel 8 oz $12.35
- RPM+Banvel Boz+Fierce 3 oz $34.75
- RPM+Ban+Fierce+Sencor 4oz $38.35
EPP/POST herbicides applied March 10, 2015 for kochia control, Tribune, KS. Kochia at cotyledon stage

- Roundup PowerMax 1 qt $6.10
- RPM+Zidua 3 oz $33.10
- RPM+Banvel 8 oz+Zidua 3 oz $30.35
- RPM+AuthMTZ 11 oz $24.00
- RPM+Banvel 8 oz+AuthMTZ 11 oz $30.30

2015 applications made on March 20

- Roundup PowerMax 1 qt $6.10
- RPM+Banvel 8 oz $12.35
- RPM+Banvel 16 oz $18.60
- RPM+Banvel 8 oz+AuthMTZ 12 oz $31.95
- Aim 1 oz+Banvel 8 oz+AuthMTZ 12 oz $31.45

Controlling Glyphosate Resistant Kochia

- Use early preplant before kochia germinate - essential
- Use a PRE herbicide
 - Corn or Sorghum atrazine, dicamba, Sharpen, Verdict, Lexar E2, Lumax E2
 - Additional corn, Corvus, Balance Flexx, Zidua, Anthem, Acuron
 - Soybean, Zidua, Anthem, Sharpen, Verdict, Fierce, sulfentrazone (Authority/Spartan), Valor based products are less effective on kochia
- POST herbicide treatments
 - TIMELY, TIMELY, TIMELY
 - Contain dicamba, Clarify, Distinct, Status, DiFlexx, Starane
 - HPPD inhibitors (with atrazine!) ie. Laudis, Callisto, Callisto Xtra, Impact, Halex GT (Balance Flexx or Corvus – 2 leaf or earlier), Huskie in sorghum

PRE active ingredients effective on Palmer amaranth

- Triazines (5) $3.80/lb ai, $0.91/dry oz product
 - Atrazine – use in April before planting corn, sorghum, or millet
 - Metribuzin – use ahead of planting soybean
- Chloroacetamides (15) $9/oz, $3.04/fl oz, per gal $118, $137, $118, $33
 - Zidua, Anthem, Dual Magnum, Outlook, Prowl, Power, Pursuit, Topexich, Breakthru, Warrant ETC.
- HPPD inhibitors (27) $5.62, $7.17, $70/gal, $63.76, $75.65
 - Balance Flex, Corvus, Acuron before planting corn, Lexar E2 or Lumax E2 ahead of corn or sorghum
- PPO inhibitors (14) $6.46/fl oz, $1.82/fl oz, $4.20/oz, $7.14/oz, $6.47/qt, $12.60/qt
 - Sharpen/Xardan can be used ahead of planting corn, sorghum, soybean use weed guide for rates
 - Sulfentrazone, Spartan or Authority based products ahead of planting soybean, Spartan ahead of sunflower
 - Valor/Valor based products for beans only, can use Valor at 2 oz rate ahead of corn and sorghum BUT there is a waiting period required!
 - Reflex products, Prefix (Reflex+Dual Magnum) and many others, only use east of Highway 281
- Herbicides with multiple modes of action: $89.36/gal, $108.10/gal, 6.22/oz
 - Corn and sorghum, Lexar, Luma, Corn only; Acuron, TriFlex 20, Tomafind 1, TriDual, Soybean products with 3 modes of action, Fierce XL, OpTill Pro

Why are the pigweeds such a problem especially in sorghum, soybeans, fallow and perhaps corn?
Palmer amaranth and Waterhemp

- Rate of Growth function of temperatures. Planting date differences between corn and sorghum are key.
 - In corn, 60’s and 70’s
 - In sorghum 80’s and 90’s
 - Less than a week, Palmer can go from 2 inch and controllable to 10 inch and NOT controllable.
 - Sometimes it’s difficult to grasp this concept!

Days after planting, 2015 Maximum daily temp Colby

Palmer amaranth and Waterhemp Known resistance somewhere in the USA

- Palmer amaranth
 - ALS
 - Triazine (Both site and metabolism)
 - Glyphosate
 - HPPD
 - PPO (not documented in KS yet)

- Waterhemp
 - All the above!
 - 2,4-D (Nebraska)
How were we handling resistance in corn.

- ALS
 - Basis, Basis Blend, Autumn Super, Python, Accent, Beacon, Spirit, Peak, Permit, Steadfast, Harmony, Resolve, etc.
- Triazines
 - Atrazine, metribuzin
 - Glyphosate 2011 in Palmer amaranth

Status of GR Palmer Amaranth in KS, 2014

Glyphosate Resistant Palmer Amaranth Reports - 2015

HPPD resistance in Palmer amaranth in Kansas and Nebraska and in Waterhemp in Nebraska, Iowa, and Illinois

- ALS
 - Basis, Basis Blend, Python, Accent, Beacon, Spirit, Peak, Permit, Steadfast etc.
- Triazines, metabolism based (NEW!) Pollen transferred
 - Atrazine, metribuzin
- HPPD, metabolism based (NEW!) Pollen transferred
 - Balance Flexx, Corvus, Impact, Armezon, Callisto, Laudis, Capreno

What herbicide groups are left to manage this pigweed?
- Glyphosate, Liberty, PPO's, Growth regulators, and Chloroacetamide’s

Weed management in sorghum, Ashland Bottoms, Manhattan KS, 2015, 1524sorg, Thompson and Peterson

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Timing</th>
<th>Rate</th>
<th>Cost/a</th>
<th>Yield Palmer</th>
<th>VLED</th>
<th>MOGQ</th>
<th>Pred. / acre</th>
<th>Bu/a</th>
<th>% control 4wk aft POST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumax EZ</td>
<td>Pre</td>
<td>2.7 qt</td>
<td>51.05</td>
<td>100</td>
<td>97</td>
<td>100</td>
<td>100</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>FullTime NXT</td>
<td>Pre</td>
<td>3 qf</td>
<td>32.30</td>
<td>109</td>
<td>98</td>
<td>55</td>
<td>77</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Degree Xtra</td>
<td>Pre</td>
<td>2.9 qt</td>
<td>34.45</td>
<td>115</td>
<td>94</td>
<td>47</td>
<td>70</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Bicep II Magnum</td>
<td>Pre</td>
<td>2.1 qt</td>
<td>22.95</td>
<td>86</td>
<td>86</td>
<td>57</td>
<td>87</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Verdict+atrazine</td>
<td>Pre</td>
<td>10 oz + 1 qt</td>
<td>18.15+1.80</td>
<td>118</td>
<td>97</td>
<td>100</td>
<td>98</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Verdict+Outlook+Metra</td>
<td>Pre</td>
<td>10+12.8oz+1pt</td>
<td>18.15+13.79+1.80</td>
<td>127</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Lumax EZ Bane+Atra</td>
<td>PRE FB POST</td>
<td>2.7 qt+4 fl oz+1 pt</td>
<td>51.05+3.10+1.30</td>
<td>123</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Huskie+Astra NIS+AMS</td>
<td>POST</td>
<td>16oz+1pt+ .5%+1.35</td>
<td>14.05+1.30+1.05+0.30</td>
<td>103</td>
<td>89</td>
<td>100</td>
<td>97</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Halo+Astra+2,4D+ NIS+AMS</td>
<td>POST</td>
<td>13oz+1 pt+4fl oz+ .5%+1.35</td>
<td>11.45+1.90+0.65+1.05+0.30</td>
<td>92</td>
<td>90</td>
<td>100</td>
<td>100</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Untreated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>--</td>
</tr>
</tbody>
</table>

LSD (0.05) 34 11 17 16

June 27, 2015 POST tri hybrids applied 6 collar sorghum, 2 to 6" Palmer, 3-6" VILD, 2-4" Magy
Weed management in conventionally tilled irrigated Corn, Tribune KS, 2014 1410cornTR, Thompson and Schlegel.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time</th>
<th>Rate</th>
<th>Cost /a</th>
<th>Yield</th>
<th>Kochia</th>
<th>Palmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>App. Prod. / acre</td>
<td>$</td>
<td>Bu/a</td>
<td>% control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corvus + atrazine PRE</td>
<td>3 oz + 1 qt</td>
<td>21.50 + 3.90</td>
<td>114</td>
<td>85</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Anthem ATZ PRE</td>
<td>2 pt</td>
<td>27.5</td>
<td>106</td>
<td>84</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Solstice+RPM+atrazine</td>
<td>POST</td>
<td>3.15 + 7.25</td>
<td>142</td>
<td>95</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Harness Xtra POST</td>
<td>3.2 pt</td>
<td>20.00</td>
<td>131</td>
<td>91</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Roundup Pmax POST</td>
<td>32 oz</td>
<td>6.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthem ATZ PRE</td>
<td>2 pt</td>
<td>27.5</td>
<td>106</td>
<td>84</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Solstice+RPM+atrazine</td>
<td>POST</td>
<td>3.15 + 7.25</td>
<td>142</td>
<td>95</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Harvest Xtra POST</td>
<td>3.2 pt</td>
<td>20.00</td>
<td>131</td>
<td>91</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Impact + Atra Status</td>
<td>POST</td>
<td>3.6 pt</td>
<td>28.20</td>
<td>105</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Status + RPM POST</td>
<td>5 oz</td>
<td>20.10</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POST trts applied with 1.0% COC - $.55/a with Solstice or 1% MSO - $.80/a with Impact + 17 lb AMS/100 gal - $0.76/a.

Weed management in corn, Ashland Bottoms, Manhattan KS, 2015, 1506corn, Thompson and Peterson

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Timing</th>
<th>Rate</th>
<th>Cost /a</th>
<th>Yield</th>
<th>Palmita</th>
<th>Vele</th>
<th>Moxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>App. Prod. / acre</td>
<td>$</td>
<td>Bu/a</td>
<td>% control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SureStart II + atrazine PRE</td>
<td>2.5 pt + 1 qt</td>
<td>33.80 + 3.80</td>
<td>151</td>
<td>97</td>
<td>93</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>SureStart II + atrazine Durango + AMS Pre</td>
<td>2.5 pt + 1 qt</td>
<td>33.80 + 3.80</td>
<td>151</td>
<td>97</td>
<td>93</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>SureStart Bivatraceine+Durango EPost</td>
<td>2pt + 1+1+9.5 oz</td>
<td>27.05 + 8.00</td>
<td>148</td>
<td>95</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corvus + atrazine Pre</td>
<td>5.6 oz</td>
<td>40.15</td>
<td>153</td>
<td>95</td>
<td>97</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Corvus + atrazine RPM+DiFlexx+Adj Pre</td>
<td>3.3 oz + 1 qt</td>
<td>23.65 + 3.80</td>
<td>142</td>
<td>100</td>
<td>97</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Corvus + atrazine RPM+DiFlexx+DiAtra+ adj Pre</td>
<td>3.1+1 qt</td>
<td>23.65 + 3.80</td>
<td>142</td>
<td>100</td>
<td>97</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Harness Xtra 5.6i Impact+Atra+MSO+ AMS Pre</td>
<td>3.2 pt</td>
<td>20.00</td>
<td>151</td>
<td>100</td>
<td>97</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Harness Xtra 5.6i Impact+Atra+MSO+ AMS Post</td>
<td>2 pt + 0.75 oz</td>
<td>18.25 + 1.55</td>
<td>148</td>
<td>100</td>
<td>97</td>
<td>92</td>
<td></td>
</tr>
</tbody>
</table>

Pre's = Apr 22, Epost = May 12 at V2, Post= June 6 at V7

2016 Chemical Weed Control for Field Crops, Pastures, Rangeland, and Noncropland

Can be found online! Search for title above, Link

Herbicide Site of Action Resistance in Kochia and Palmer Amaranth

Phil Stahlman, Weed Scientist
KSU Agricultural Research Center-Hays

The vast majority of cropland acres in the United States are treated with chemical herbicides, often more than once a year. Because all natural weed populations may contain very low frequencies of individual plants (biotypes) that are naturally resistant to certain herbicides, an unintended consequence of extensive herbicide use is that frequent repeated use of any herbicide can cause shifts in species composition of weed populations and select for tolerant or resistant biotypes. Numerous studies have found that repeatedly using any single herbicide mechanism of action without alternative management tactics will eventually eliminate susceptible species or biotypes from an existing population and allow naturally tolerant or resistant biotypes to flourish and dominate the population. Herbicide resistance is now widely recognized as the result of adaptive evolution of weed populations to intense selection pressure imposed by herbicides.

Genetic diversity is the heritable genetic variation within and among populations of species. Species with high genetic diversity, especially those that produce large quantities of seed that readily germinate, adapt and evolve faster in response to changing environmental conditions and selection pressures than species with low genetic diversity. Thus, species with high genetic diversity are prone to evolved resistance to herbicides. There is more than one mechanism of resistance for most herbicide modes of action and several known amino acid substitutions within target site proteins that prevent herbicide binding and disruption of critical biochemical pathways. Non-target site resistance mechanisms (e.g. reduced herbicide uptake or translocation, herbicide sequestration, or enhanced metabolism) allow plants to survive by preventing herbicide from reaching the target site or by producing more of the targeted enzyme than the herbicide can inhibit (e.g. over expression or gene amplification).

Currently, herbicide resistance has been confirmed in 247 weed species in 66 countries with evolved resistance to 22 of the 25 known herbicide sites of action (Heap 2016). Developed countries in which in most arable acres are treated with herbicides have the greatest number of weed species resistant to known herbicide sites of action. Most reported cases involve resistance to a single herbicide site of action; however, several major weeds have evolved resistance to two or more sites of action. Examples include kochia and Palmer amaranth, broadleaf weeds of great economic importance throughout Kansas and the Great Plains.

Herbicide-resistant kochia. High genetic diversity in kochia is maintained through substantial gene flow within and between populations by way of protogynous flowering (female stigmas are receptive of pollen from other flowers up to a week before male stamens of that flower shed pollen), facultative open pollination, and tumbleweed mode of seed dispersal over long distances. Kochia has evolved resistance to four herbicide modes of action and in recent years there have been several confirmed cases of multiple site of action resistance.

As early as the mid-1970s, kochia growing along railroad embankments in several states was no longer controlled by triazine herbicides (Photosystem II inhibitors, Groups 5 & 7) after many years of use for complete vegetation control. Triazine-resistant kochia quickly spread into cropland...
fields throughout the U.S. However, triazine-resistant plants are less fit than triazine-susceptible plants and do not persist in the population in the absence of continued selection. In 1987, selection of kochia and prickly lettuce (*Lactuca serriola* L.) biotypes resistant to sulfonylurea herbicides (ALS inhibitors, Group 2) in Kansas and Idaho was confirmed after as few as five consecutive years of sulfonylurea herbicide use. Evolved resistance to ALS-inhibiting herbicides in multiple species increased at an alarming rate, including ALS-resistant kochia in 13 U.S. states and Canadian provinces within seven years and nearly 150 species worldwide within 25 years after commercialization. As a result of the reduced efficacy of ALS-inhibiting herbicides, growers began using dicamba (Synthetic auxins, Group 4) extensively to control ALS-resistant kochia. It was not surprising then when in 1994 numerous kochia plants were not controlled with field use rates of dicamba in a corn field in Nebraska and in wheat fields in northern Montana following several years of extensive dicamba use in cereal grain crops. More than 15-years later, weed scientists in Nebraska reported an 18-fold difference in dicamba dose required to achieve 90% injury between least and most susceptible kochia plants from four populations. Similarly, K-State weed scientists reported an eight-fold difference between least and most susceptible kochia plants from 11 Kansas populations (Brachtenbach 2015) (Figure 1). Kochia resistance to glyphosate (EPSP synthase inhibitors, Group 9) was first found in four geographically dispersed population in 2007 and by the end of 2012 had spread throughout the central and northern Great Plains and subsequently into the Pacific Northwest (Godar et al. 2015b).

![Figure 1. Kochia mortality in response postemergence-applied dicamba at 64 fl oz/A (8x rate).](image)

The first confirmed cases of multiple herbicide resistance was discovery of ALS inhibitor and glyphosate-resistant kochia in western Canada in 2012 (Beckie et al 2013). The following year, K-State weed scientists confirmed the first known case of resistance to four groups of herbicides (atrazine, Group 5; chlorsulfuron, Group 2; glyphosate, Group 9; and dicamba, Group 4) in a single kochia population (Varanasi et al. 2015). The ratio of R:S plants to individual herbicides varied from 25% of plants resistant to atrazine to more than 85% of plants resistant to field use rates of...
chlorsulfuron, dicamba, and glyphosate. We also have confirmed 3-way resistance in several additional population.

Herbicide-resistant Palmer amaranth. The first case of herbicide resistance in Palmer amaranth was resistance to trifluralin (Microtubule inhibitors, Group 3) in South Carolina in 1989, followed by resistance to atrazine (Group 5) in Texas and Kansas in 1993 and 1995, respectively (Heap 2015). Widespread resistance to ALS inhibitors (Group 2) evolved in several states during the 1990s. But resistance to glyphosate (Group 9), first reported in cotton and soybeans in Georgia in 2005, arguably has had far the greater economic impact than resistance to all other herbicides. Palmer amaranth resistance to glyphosate in Kansas was first confirmed in Cowley Co. in 2011, and in Stafford and Pottawatomie counties in 2012. We collected seed from 157 fields in 24 counties in fall 2014 and screened the populations for resistance to glyphosate in the greenhouse. All plants in 31% of the 157 populations were susceptible (S) to glyphosate; all plants were resistant (R) in 35% of the populations; and 34% of the populations were segregating (contained both R and S plants) (Stahlman, unpublished). In 2015, glyphosate-resistant Palmer amaranth was widespread throughout central and eastern Kansas and was present but less common in western Kansas.

Because of the widespread resistance to both Group 2 and Group 9 herbicides, the occurrence of multiple resistance was inevitable. There have been several confirmed cases of multiple resistance to Group 2 and Group 9 herbicides during the past 3 years (Heap 2016). We are currently testing those same 157 populations for resistance to multiple herbicide sites of action. Though these trials are still ongoing and results are preliminary, it is obvious that many of the populations that are resistant to glyphosate also are resistant to chlorsulfuron and several appear resistant to mesothione (HPPD inhibitors, Group 27), 2,4-D and dicamba (Group 4).

Implications of Herbicide Resistance. Economic considerations are a major criterion for most growers in making weed management decisions. Thus, it is understandable that most growers are reluctant to proactively change effective weed management practices to more complex and/or expensive practices as long as current practices are still effective. Often the first reactive response to ineffective weed control is to increase herbicide use rate. In response to declining glyphosate effectiveness on kochia, Kansas growers increased glyphosate use rates by 50% and increased application frequencies from 2.0 to 2.9 during the years before discovery of GR-kochia in 2007 to 2012 (Godar et al. 2015a). During that same time period Kansas growers reduced the exclusive use of glyphosate on GR crops from 49 to 15% of fields and began diversifying weed management practices. Clearly, the spread of GR kochia forced changes in practices and increased costs of weed management.

Canadian researchers have concluded the presence of GR weeds will increase environmental impact of weed management by requiring additional herbicides or by growers resorting to tillage to control GR weeds, the latter resulting in reduced soil quality and increased fossil fuel consumption (Beckie et al. 2014). The predicted environmental impact of increased tillage is supported by results of a visual survey of 1500 winter wheat stubble fields in western Kansas in late August 2011 (Stahlman et al. 2013). That survey found 64% of wheat stubble fields had been sprayed with herbicide(s) to control weeds post-harvest and 31% of the fields had been tilled. Some of the tilled fields had been tilled after earlier herbicide treatment failed to control kochia. Poor herbicidal control of kochia in many fields and higher-than-expected percentage of tilled fields
indicate a shift to more tillage to control herbicide-resistant kochia following wheat harvest. Evolution of weed resistance to herbicides not only complicates weed management but also threatens sustainable agricultural production and soil and water conservation gains achieved during past decades (CAST 2012).

Literature Cited

Platinum Sponsors

KILLING WEEDS BETTER

Of special interest to Farmers - ABSORB 100 is a soybean oil based adjuvant and was sprayed on more than 1 million acres last year. This MSO heats up your herbicide or pesticide to make it more potent.

Rounding out our product line to assist fellow farmers with problems such as wind drift and glyphosate tie-up are Padlock a polymer drift control, PadlockAMS which provides drift control along with water conditioner, surfactant and AMS, and our newest product Extend. This product encapsulates your chemical and lengthens the window for incorporation, provides drift control, and leaves a residual benefit.

Talk to your local chemical dealer or call us to visit with a sales rep.

888-679-6103
www.egebio.com
PO Box 538 Minneola, KS 67865
With the High Plains Sunflower Committee

Enhancing sunflower production through education, research and promotion

Please take a moment and assess the financial advantages sunflowers can provide your farming operation this next growing summer. Whether it be oils or confections, outstanding opportunities are available for sunflowers this next year. To view the latest information on yield trials, revenue assurance, market prices, elevators taking sunflowers, chemical options, and other important topics, please view the National Sunflower association web site:

http://www.sunflowersnsa.com/
Platinum Sponsors

Visit with us about putting your yield data to work for you!

Data Management Packages Offered:
1. Organizer Level
2. Complete Essentials Level
3. Comprehensive Level
4. Comprehensive Ultimate Level

Ask our team about RTK, Field Connect Soil Moisture Probes, Wireless Data Transfer and more!

View full details & inventory at www.plainsequipmentgroup.com

Stock up NOW on John Deere Oil & Filters:
- 15% Off Filters in JAN
- 12% Off Filters in FEB
- 10% Off Packaged Oil

Sales end FEB 29, 2016

1006 Industrial Park Ave
Osborne, KS 67473

(785) 346-5681

www.simsfarm.com
SureFire Ag Systems is your source for precision application solutions. From standard liquid application solutions for planters, drills, strip-till machines to our wide range variable rate technology solution, LiquiShift.

Speak to one of our experts to configure the system for your needs.
Frontier Ag Inc helps farmers protect their revenue and preserve equity by combining.....
Grain Marketing • Sunflower Contracts
Crop Input Financing • Crop Insurance
Agronomy • Petroleum Contracts

OUR MISSION is to help farmers and ranchers protect, improve, and restore our God-given soil resource through education, guidance, and fairly priced cover crop seed for developing healthy soils, growing healthy food, and producing healthy people.

WE STRIVE to honor and glorify God through our business ethics and practices, and to follow the example of Jesus Christ in treating all of our customers and employees with honesty, fairness, respect and humility.

Keith and Brian Berns • Bladen, NE • 402-469-6784
www.greencoverseed.com • keith@greencoverseed.com
Gold Sponsors

Shelbourne Reynolds

- UPRATED DRIVE AND FULLY FLIGHTED AUGER AVAILABLE
- AVAILABLE FOR ALL CVS MODELS

CONTACT US FOR NEW MACHINE SPECIALS
(785) 462-6299
WWW.SHELBOURNE.COM

Simpson Farm Enterprises, Inc.

Ransom, KS 1.800.235.5359
Hays, KS 1.888.228.3611
Great Bend, KS 1.866.379.1426
Beloit, KS 1.888.232.8558
<table>
<thead>
<tr>
<th>Silver Sponsors</th>
</tr>
</thead>
</table>
| Ag Pro Crop Insurance
Jason Pfeifer
pfeija@insurance-planning.com
785-650-5143 |
| Ag Valley Coop
Chris O'Hare
cohare@agvalley.com
785-470-1085 |
| American Agricultural Laboratory
Christine Grooms
christine@amaglab.com
308-345-3670 |
| Arrow Seed Co Inc
Deb Girardin
de@arrowseed.com
308-872-6826 |
| Channel
Matthew Stevenson
matthew.stevenson@channel.com |
| CHS-Oberlin
Brandon Kuykendall
brandon.kuykendall@hotmail.com
785-475-3116 |
| Clydesdale Agronomy LLC
Randy Clydesdale
randyc@ruraltel.net
785-871-7745 |
| Crop Production Services
Patricia Richards
patti.richards@cpsagu.com
785-475-3494 |
| Crop Quest Inc
Tracy Smith
tssmith@cropquest.com
620-225-2233 |
| Decatur Co Beef, LLC
Spring Louderback
spring@feedcattle.com
785-475-2212 |
| Decatur County Coop
James Garner
jgarner@decaturcoop.net
785-475-2233 |
| DuPont Crop Protection
Justin Herman
justin.c.herman@dupont.com
970-571-4111 |
| Encirca Services
Landon Truetken
landon.truetken@encirca.pioneer.com
785-386-8176 |
| Exapta Solutions
Leah Lanie
sales@exapta.com
785-820-8000 |
| Farm Implement and Supply Co Inc
Chadd Copeland
chaddc@ruraltel.net
785-434-4824 |
| Fischer Ag LLC
Brian Fischer
fischeragsupplies@gmail.com
785-533-1543 |
| Golden Plains Ag
Andy Davis
mcm@colby.ixks.com
785-462-4120 |
| Horton Seed Services
Alec Horton
hortonseedservices@gmail.com
620-214-2417 |
Silver Sponsors

JD Skiles Company
Frank Miller
frank@jdskiles.com
785-626-9338

Kansas Corn Commission
Erin Rios
erios@ksgrains.com
785-448-6922

Kansas Soybean Comission
Sherry Seifert
sseifert@embarqmail.com
785-271-1040

KS Grain Sorghum Commission
Jill Barnhardt
jill@ksgrainsorghum.org
785-477-9474

LG Seeds
Denton Bailey
denton.bailey@lgseeds.com
785-475-4447

Miller Evolve LLC
Mike Sides
millrevolve@outlook.com
308-343-3561

Mycogen Seeds
Bruce Keiser
bakeiser@dow.com
785-443-1303

NuTech Seed
Troy Westadt
troy.westadt@nutechseed.com
308-340-9768

Precision Ag Solutions
Daniel Marciniak
greasemandan@gmail.com
620-450-5613

Producers Hybrids
Marty Shafer
martin.shafer@producershybrids.com
308-655-0853

Red Willow Chemical
Mark Vlasin & Tom Ott
mvlasin@hotmail.com
308-345-3635

Rob-See-Co
Mike Wetter
mwetter@robseeco.com
785-443-4598

Select Seeds
Rod Spencer
selectseeds@gpcom.net
308-278-2160

Sharp Bros Seed Co
Jeff Allen
jeff.allen@sharpseed.com
800-462-8483

Simpot Grower Solutions
Josh Kastens
joshua.kastens@simplot.com
785-626-9609

Sorghum Partners
Becky Vandike
bvandike@chromatininc.com
785-728-7310

Star Seed Inc
Devon Walter
devon@gostarseed.com
800-782-7311
Weather:
- National Weather Service-Goodland www.crh.noaa.gov/gld
- CoCoRahs www.cocorahs.org
- Drought Monitor www.droughtmonitor.unl.edu

K-State:
- Cover Your Acres Conference www.northwest.ksu.edu/coveryouracres
- K-State Research and Extension www.ksre.ksu.edu
- K-State Department of Agronomy www.agronomy.ksu.edu
- K-State Ag Economics Extension www.agmanager.info
- K-State Department of Entomology www.entomology.ksu.edu
- K-State Department of Plant Pathology www.plantpath.ksu.edu
- K-State Department of Bio and Ag Engineering www.bae.ksu.edu
- K-State Mobile Irrigation Lab www.mobileirrigationlab.com
- K-State Western Kansas Ag Research Centers www.wkarc.org

Herbicide Labels:
- Greenbook www.greenbook.net
- CDMS www.cdms.net
The plan for the day...

<table>
<thead>
<tr>
<th>Time</th>
<th>Room 1</th>
<th>Room 2</th>
<th>Room 3</th>
<th>Room 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:45-8:15</td>
<td>Registration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:15-8:20</td>
<td></td>
<td>Welcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:30-9:20</td>
<td>Finding Profitability¹ (M. Wood)</td>
<td>Weed Resistance: Current and Future¹,²</td>
<td>Managing Soil pH Highs and Lows¹</td>
<td>Sunflower Update (Natl. Sunflower Assoc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(P. Stahlman)</td>
<td>(D. Ruiz-Diaz)</td>
<td>(I)</td>
</tr>
<tr>
<td>9:30-10:20</td>
<td>Soil Biology and Carbon in Dryland Ag¹</td>
<td>Weather and Ag in the Tri-State Region¹</td>
<td>Economics of Soil Fertility Management¹</td>
<td>Edible Sunflowers & Farm Planning</td>
</tr>
<tr>
<td></td>
<td>(D. Manter)</td>
<td>(D. Floyd)</td>
<td>(L. Haag)</td>
<td>(Frontier Ag) (I)</td>
</tr>
<tr>
<td>10:20-10:50</td>
<td>View Exhibits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:50-11:40</td>
<td>Weed Control Strategies¹,²</td>
<td>Sorghum and Wheat Insect Issues¹,²</td>
<td>UAVs in Crop Production¹</td>
<td>Chemicals 101 (Sims Fertilizer) (I)</td>
</tr>
<tr>
<td></td>
<td>(C. Thompson)</td>
<td>(S. Zukoff)</td>
<td>(I. Ciampitti)</td>
<td></td>
</tr>
<tr>
<td>11:50-12:40</td>
<td>Today’s Farm Situation vs. the 1980’s¹</td>
<td>Managing Soil pH Highs and Lows¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(G. Ibendahl)</td>
<td>(D. Ruiz-Diaz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:50-1:40</td>
<td>Weed Resistance: Current and Future¹,²</td>
<td>Soil Biology and Carbon in Dryland Ag¹</td>
<td></td>
<td>Lunch</td>
</tr>
<tr>
<td></td>
<td>(P. Stahlman)</td>
<td>(D. Manter)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:50-2:40</td>
<td>Economics of Soil Fertility Management¹</td>
<td>Weed Control Strategies¹,²</td>
<td>Today’s Farm Situation vs. the 1980’s¹</td>
<td>New Innovations from Bayer CropScience (I)</td>
</tr>
<tr>
<td></td>
<td>(L. Haag)</td>
<td>(C. Thompson)</td>
<td>(G. Ibendahl)</td>
<td></td>
</tr>
<tr>
<td>2:40-3:10</td>
<td>View Exhibits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:10-4:00</td>
<td>Wheat Seed Industry Discussion Panel</td>
<td>UAVs in Crop Production¹</td>
<td>Sorghum and Wheat Insect Issues¹,²</td>
<td>Importance of Adjuvants (EGE Products) (I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I. Ciampitti)</td>
<td>(S. Zukoff)</td>
<td></td>
</tr>
<tr>
<td>4:10-5:00</td>
<td>Weather and Ag in the Tri-State Region¹</td>
<td>Finding Profitability¹</td>
<td>Encirca Services Decision Tools (Pioneer Hi-Bred) (I)</td>
<td>Grazing Cover Crops for Soil Health & Profit (Green Cover Seed) (I)</td>
</tr>
<tr>
<td></td>
<td>(D. Floyd)</td>
<td>(M. Wood)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(¹) indicate industry sessions.

¹ Indicate Certified Crop Advisor CEUs applied for.

² Indicate Commercial Applicator CEUs applied for.

This conference is organized by a committee of producers and K-State Research & Extension personnel. Lucas Haag, K-State Northwest Area Agronomist is the conference coordinator and proceedings editor. Please send your feedback to lhaag@ksu.edu

www.facebook.com/NWKSAGronomy

#CYA16

www.northwest.ksu.edu/CoverYourAcres